Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(1)2021 Dec 27.
Article in English | MEDLINE | ID: mdl-35009693

ABSTRACT

The development of "large display, high performance and low cost" in the FPD industry demands glass substrates to be "larger and thinner". Therefore, the requirements of handling robots are developing in the direction of large scale, high speed, and high precision. This paper presents a novel construction of a glass substrate handling robot, which has a 2.5 m/s travelling speed. It innovatively adopts bionic end-suction technology to grasp the glass substrate more firmly. The structure design is divided into the following three parts: a travel track, a robot body, and an end-effector. The manipulator can be smoothly and rapidly extended by adjusting the transmission ratio of the reducer to 1:2:1, using only one motor to drive two sections of the arm. This robot can transfer two pieces of glass substrate at one time, and improves the working efficiency. The kinematic and dynamic models of the robot are built based on the DH coordinate. Through the positioning accuracy experiment and vibration experiment of the end-effector, it is found that the robot has high precision during handling. The robots developed in this study can be used in large-scale glass substrate handling.


Subject(s)
Bionics , Robotics , Biomechanical Phenomena , Glass
SELECTION OF CITATIONS
SEARCH DETAIL
...