Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 496
Filter
1.
Ibrain ; 10(2): 197-216, 2024.
Article in English | MEDLINE | ID: mdl-38915944

ABSTRACT

This review comprehensively assesses the epidemiology, interaction, and impact on patient outcomes of perioperative sleep disorders (SD) and perioperative neurocognitive disorders (PND) in the elderly. The incidence of SD and PND during the perioperative period in older adults is alarmingly high, with SD significantly contributing to the occurrence of postoperative delirium. However, the clinical evidence linking SD to PND remains insufficient, despite substantial preclinical data. Therefore, this study focuses on the underlying mechanisms between SD and PND, underscoring that potential mechanisms driving SD-induced PND include uncontrolled central nervous inflammation, blood-brain barrier disruption, circadian rhythm disturbances, glial cell dysfunction, neuronal and synaptic abnormalities, impaired central metabolic waste clearance, gut microbiome dysbiosis, hippocampal oxidative stress, and altered brain network connectivity. Additionally, the review also evaluates the effectiveness of various sleep interventions, both pharmacological and nonpharmacological, in mitigating PND. Strategies such as earplugs, eye masks, restoring circadian rhythms, physical exercise, noninvasive brain stimulation, dexmedetomidine, and melatonin receptor agonists have shown efficacy in reducing PND incidence. The impact of other sleep-improvement drugs (e.g., orexin receptor antagonists) and methods (e.g., cognitive-behavioral therapy for insomnia) on PND is still unclear. However, certain drugs used for treating SD (e.g., antidepressants and first-generation antihistamines) may potentially aggravate PND. By providing valuable insights and references, this review aimed to enhance the understanding and management of PND in older adults based on SD.

2.
Fitoterapia ; 177: 106077, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906387

ABSTRACT

The screening of based target compounds supported by LC/MS, MS/MS and Global Natural Products Social (GNPS) used to identify the compounds 1-10 of Butea monsperma. They were evaluated in human malignant embryonic rhabdomyoma cells (RD cells) infected with Human coronavirus OC43 (HCoV-OC43) and showed significant inhibitory activity. Target inhibition tests showed that compounds 6 and 8 inhibited the proteolytic enzyme 3CLpro, which is widely present in coronavirus and plays an important role in the replication process, with an effective IC50 value. The study confirmed that dioxymethylene of compound 8 may be a key active fragment in inhibiting coronavirus (EC50 7.2 µM, SI > 139.1). The results have led to identifying natural bioactive compounds for possible inhibiting HCoV-OC43 and developing drug for Traditional Chinese Medicine (TCM).

3.
Genome Biol ; 25(1): 148, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845023

ABSTRACT

BACKGROUND: Sheep and goats have undergone domestication and improvement to produce similar phenotypes, which have been greatly impacted by structural variants (SVs). Here, we report a high-quality chromosome-level reference genome of Asiatic mouflon, and implement a comprehensive analysis of SVs in 897 genomes of worldwide wild and domestic populations of sheep and goats to reveal genetic signatures underlying convergent evolution. RESULTS: We characterize the SV landscapes in terms of genetic diversity, chromosomal distribution and their links with genes, QTLs and transposable elements, and examine their impacts on regulatory elements. We identify several novel SVs and annotate corresponding genes (e.g., BMPR1B, BMPR2, RALYL, COL21A1, and LRP1B) associated with important production traits such as fertility, meat and milk production, and wool/hair fineness. We detect signatures of selection involving the parallel evolution of orthologous SV-associated genes during domestication, local environmental adaptation, and improvement. In particular, we find that fecundity traits experienced convergent selection targeting the gene BMPR1B, with the DEL00067921 deletion explaining ~10.4% of the phenotypic variation observed in goats. CONCLUSIONS: Our results provide new insights into the convergent evolution of SVs and serve as a rich resource for the future improvement of sheep, goats, and related livestock.


Subject(s)
Goats , Animals , Goats/genetics , Sheep/genetics , Evolution, Molecular , Genomic Structural Variation , Quantitative Trait Loci , Genome , Genetic Variation , Domestication , Phenotype , Selection, Genetic , Bone Morphogenetic Protein Receptors, Type I/genetics
4.
Phys Rev Lett ; 132(23): 235001, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38905668

ABSTRACT

Relativistic positron sources with high spin polarization have important applications in nuclear and particle physics and many frontier fields. However, it is challenging to produce dense polarized positrons. Here we present a simple and effective method to achieve such a positron source by directly impinging a relativistic high-density electron beam on the surface of a solid target. During the interaction, a strong return current of plasma electrons is induced and subsequently asymmetric quasistatic magnetic fields as high as megatesla are generated along the target surface. This gives rise to strong radiative spin flips and multiphoton processes, thus leading to efficient generation of copious polarized positrons. With three-dimensional particle-in-cell simulations, we demonstrate the production of a dense highly polarized multi-GeV positron beam with an average spin polarization above 40% and nC-scale charge per shot. This offers a novel route for the studies of laserless strong-field quantum electrodynamics physics and for the development of high-energy polarized positron sources.

5.
World J Clin Cases ; 12(17): 3105-3122, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38898844

ABSTRACT

BACKGROUND: Malancao (MLC) is a traditional Chinese medicine with a long history of utilization in treating ulcerative colitis (UC). Nevertheless, the precise molecular mechanisms underlying its efficacy remain elusive. This study leveraged ultra-high-performance liquid chromatography coupled with exactive mass spectrometry (UHPLC-QE-MS), network pharmacology, molecular docking (MD), and gene microarray analysis to discern the bioactive constituents and the potential mechanism of action of MLC in UC management. AIM: To determine the ingredients related to MLC for treatment of UC using multiple databases to obtain potential targets for fishing. METHODS: This research employs UHPLC-QE-MS for the identification of bioactive compounds present in MLC plant samples. Furthermore, the study integrates the identified MLC compound-related targets with publicly available databases to elucidate common drug disease targets. Additionally, the R programming language is utilized to predict the central targets and molecular pathways that MLC may impact in the treatment of UC. Finally, MD are conducted using AutoDock Vina software to assess the affinity of bioactive components to the main targets and confirm their therapeutic potential. RESULTS: Firstly, through a comprehensive analysis of UHPLC-QE-MS data and public database resources, we identified 146 drug-disease cross targets related to 11 bioactive components. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis highlighted that common disease drug targets are primarily involved in oxidative stress management, lipid metabolism, atherosclerosis, and other processes. They also affect AGE-RAGE and apoptosis signaling pathways. Secondly, by analyzing the differences in diseases, we identified key research targets. These core targets are related to 11 active substances, including active ingredients such as quercetin and luteolin. Finally, MD analysis revealed the stability of compound-protein binding, particularly between JUN-Luteolin, JUN-Quercetin, HSP90AA1-Wogonin, and HSP90AA1-Rhein. Therefore, this suggests that MLC may help alleviate intestinal inflammation in UC, restore abnormal lipid accumulation, and regulate the expression levels of core proteins in the intestine. CONCLUSION: The utilization of MLC has demonstrated notable therapeutic efficacy in the management of UC by means of the compound target interaction pathway. The amalgamation of botanical resources, metabolomics, natural products, MD, and gene chip technology presents a propitious methodology for investigating therapeutic targets of herbal medicines and discerning novel bioactive constituents.

6.
J Colloid Interface Sci ; 670: 174-181, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38761570

ABSTRACT

Interlayer intercalation engineering shows great feasibility to improve the structure stability of the layered oxides. Although high Zn-storage capability has been attained based on the pillar effect of multifarious intercalants, an in-depth understanding the synergistic effect of intercalated multiple metal ions is still in deficiency. Herein, alkali metal ion K+, alkaline earth metal ion Mg2+ and trivalent metal ion Al3+ are introduced into the VO interlayer of V2O5. Due to the different electronegativity and hydrated ion radius of K+, Mg2+ and Al3+, adjusting the relative proportions of these metal ions can achieve an appropriate interlayer spacing, stable layer structure and regular morphology, which facilitates the transport kinetics of Zn2+. Under the synergistic effect of pre-intercalated multi-metal ion, the optimal tri-metal ion intercalated hydrated V2O5 cathode exhibits a high specific capacity of 382.4 mAh g-1 at 0.5 A g-1, and long-term cycling stability with capacity retention of 86 % after 2000 cycles at the high current density of 10 A g-1. Ex-situ and kinetic characterizations reveal the fast charge transfer and reversible Zn2+ intercalation mechanism. The multi-ion engineering strategy provides an effective way to design desirable layered cathode materials for aqueous zinc-ion batteries.

8.
Mol Biotechnol ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734842

ABSTRACT

Chemoresistance is a key obstacle in the long-term survival of patients with locally and advanced lung adenocarcinoma (LUAD). This study used bioinformatic analysis to reveal the chemoresistance of gene-neutrophil extracellular traps (NETs) associated with LUAD. RNA sequencing data and LUAD expression patterns were obtained from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, respectively. The GeneCards database was used to identify NETosis-related genes (NRGs). To identify hub genes with significant and consistent expression, differential analysis was performed using the TCGA-LUAD and GEO datasets. LUAD subtypes were determined based on these hub genes, followed by prognostic analysis. Immunological scoring and infiltration analysis were conducted using NETosis scores (N-scores) derived from the TCGA-LUAD dataset. A clinical prognostic model was established and analyzed, and its clinical applications explored. Twenty-two hub genes were identified, and consensus clustering was used to identify two subgroups based on their expression levels. The Kaplan-Meier (KM) curves demonstrated statistically significant differences in prognosis between the two LUAD subtypes. Based on the median score, patients were further divided into high and low N-score groups, and KM curves showed that the N-scores were more precise at predicting the prognosis of patients with LUAD for overall survival (OS). Immunological infiltration analysis revealed significant differences in the abundances of 10 immune cell infiltrates between the high and low N-score groups. Risk scores indicated significant differences in prognosis between the two extreme score groups. The risk scores for the prognostic model also indicated significant differences between the two groups. The results provide new insights into NETosis-related differentially expressed genes (NRDEGs) associated with chemotherapy resistance in patients with LUAD. The established prognostic model is promising and could help with clinical applications to evaluate patient survival and therapeutic efficiency.

9.
Endocrine ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760615

ABSTRACT

OBJECTIVE: Teprotumumab plays an important role in thyroid eye disease pathogenesis and progression. We intend to mine the adverse event (AE) signals from a relevant database, thereby contributing to the safe use of teprotumumab. METHODS: The data obtained from the ASCII data packages in the FAERS database from January 2020 to the second quarter of 2023 were imported into the SAS software (version 9.4) for data cleaning and analysis. Disproportionality analysis was performed using the reporting odds ratio (ROR) in conjunction with the United Kingdom Medicines and Healthcare Products Regulatory Agency (MHRA) omnibus standard method to detect positive signals. PARTICIPANTS: This retrospective observational study relied on adverse drug reactions reported to the FDA through FAERS, which is a standard public system for spontaneous reporting. RESULTS: Collectively, 2171 AE reports for teprotumumab were collected, among which 108 significant signals were identified involving 17 system organ classes. The SOC of ear and labyrinth disorders included the most AE signals and reports. Muscle spasms, fatigue, headache, nausea, diarrhea, alopecia, blood glucose increased, hypoacusis, tinnitus, and diabetes mellitus were the top ten PTs ranked by the frequency of reporting, meanwhile, the two high-strength signals of thyroid-stimulating immunoglobulin increase (ROR 662.89, 95% CI 182.40-2409.19) and gingival recession (ROR 125.13, 95% CI 79.70-196.45) were not documented in the drug instruction. Meanwhile, we found a higher risk of increased blood glucose, deafness, and decreased appetite for male patients, and headache for female patients. CONCLUSIONS: Clinical application of teprotumumab should be closely monitored for ototoxicity, nail abnormalities, and menstrual changes, as well as for AEs not mentioned in the drug instruction, including gingival recession, thyroid-stimulating immunoglobulin increase, and so on.

10.
Angew Chem Int Ed Engl ; : e202402371, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38763920

ABSTRACT

2D compounds exfoliated from weakly bonded bulk materials with van der Waals (vdW) interaction are easily accessible. However, the strong internal ionic/covalent bonding of most inorganic crystal frameworks greatly hinders 2D material exfoliation. Herein, we first proposed a radical/strain-synergistic strategy to exfoliate non-vdW interacting pseudo-layered phosphate framework. Specifically, hydroxyl radicals (⋅OH) distort the covalent bond irreversibly, meanwhile, H2O molecules as solvents, further accelerating interlayered ionic bond breakage but mechanical expansion. The innovative 2D laminar NASICON-type Na3V2(PO4)2O2F crystal, exfoliated by ⋅OH/H2O synergistic strategy, exhibits enhanced sodium-ion storage capacity, high-rate performance (85.7 mAh g-1 at 20 C), cyclic life (2300 cycles), and ion migration rates, compared with the bulk framework. Importantly, this chemical/physical dual driving technique realized the effective exfoliation for strongly coupled pseudo-layered frameworks, which accelerates 2D functional material development.

12.
Angew Chem Int Ed Engl ; 63(25): e202401559, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38616720

ABSTRACT

Air self-charging aqueous batteries promise to integrate energy harvesting technology and battery systems, potentially overcoming a heavy reliance on energy and the spatiotemporal environment. However, the exploitation of multifunctional air self-charging battery systems using promising cathode materials and suitable charge carriers remains challenging. Herein, for the first time, we developed low-temperature self-charging aqueous Zn-K hybrid ion batteries (AZKHBs) using a fully conjugated hexaazanonaphthalene (HATN)-based porous aromatic framework as the cathode material, exhibiting redox chemistry using K+ as charge carriers, and regulating Zn-ion solvation chemistry to guide uniform Zn plating/stripping. The unique AZKHBs exhibit the exceptional electrochemical properties in all-climate conditions. Most importantly, the large potential difference causes the AZKHBs discharged cathode to be oxidized using oxygen, thereby initiating a self-charging process in the absence of an external power source. Impressively, the air self-charging AZKHBs can achieve a maximum voltage of 1.15 V, an impressive discharge capacity (466.3 mAh g-1), and exceptional self-charging performance even at -40 °C. Therefore, the development of self-charging AZKHBs offers a solution to the limitations imposed by the absence of a power grid in harsh environments or remote areas.

13.
J Colloid Interface Sci ; 666: 346-354, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38603877

ABSTRACT

The unique electronic and crystal structures of rare earth metals (RE) offer promising opportunities for enhancing the hydrogen evolution reaction (HER) properties of materials. In this work, a series of RE (Sm, Nd, Pr and Ho)-doped Rh@NSPC (NSPC stands for N, S co-doped porous carbon nanosheets) with sizes less than 2 nm are prepared, utilizing a simple, rapid and solvent-free joule-heat pyrolysis method for the first time. The optimized Sm-Rh@NSPC achieves HER performance. The high-catalytic performance and stability of Sm-Rh@NSPC are attributed to the synergistic electronic interactions between Sm and Rh clusters, leading to an increase in the electron cloud density of Rh, which promotes the adsorption of H+, the dissociation of Rh-H bonds and the release of H2. Notably, the overpotential of the Sm-Rh@NSPC catalyst is a mere 18.1 mV at current density of 10 mAcm-2, with a Tafel slope of only 15.2 mV dec-1. Furthermore, it exhibits stable operation in a 1.0 M KOH electrolyte at 10 mA cm-2 for more than 100 h. This study provides new insights into the synthesis of composite RE hybrid cluster nanocatalysts and their RE-enhanced electrocatalytic performance. It also introduces fresh perspectives for the development of efficient electrocatalysts.

14.
J Colloid Interface Sci ; 667: 111-118, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38626654

ABSTRACT

Due to the rapid increase in the number of spent lithium-ion batteries, there has been a growing interest in the recovery of degraded graphite. In this work, a rapid thermal shock (RTS) strategy is proposed to regenerate spent graphite for use in lithium-ion batteries. The results of structural and morphological characterization demonstrate that the graphite is well regenerated by the RTS process. Additionally, an amorphous carbon layer forms and coats onto the surface of the graphite, contributing to excellent rate performance. The regenerated graphite (RG-1000) displays excellent rate performance, with capacities of 413 mAh g-1 at 50 mA g-1 and 102.1 mAh g-1 at 1000 mA g-1, respectively. Furthermore, it demonstrates long-term cycle stability, maintaining a capacity of 80 mAh g-1 at 1000 mA g-1 with a capacity retention of 78.4 % after 600 cycles. This RTS method enables rapid and efficient regeneration of spent graphite anodes for lithium-ion batteries, providing a facile and environmentally friendly strategy for their direct regeneration.

15.
J Colloid Interface Sci ; 667: 303-311, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38640650

ABSTRACT

Metal selenides have emerged as promising Na-storage anode materials owing to their substantial theoretical capacity and high cost-effectiveness. However, the application of metal selenides is hindered by inferior electronic conductivity, huge volume variation, and sluggish kinetics of ionic migration. In response to these challenges, herein, a hierarchical hollow tube consisting of FeSe2 nanosheets and Se quantum dots anchored within a carbon skeleton (HT-FeSe2/Se/C) is strategically engineered and synthesized. The most remarkable feature of HT-FeSe2/Se/C is the introduction of Se quantum dots, which could lead to high electron density near the Fermi level and significantly enhance the overall charge transfer capability of the electrode. Moreover, the distinctive hollow tubular structure enveloped by the carbon skeleton endows the HT-FeSe2/Se/C anode with robust structural stability and fast surface-controlled Na-storage kinetics. Consequently, the as-synthesized HT-FeSe2/Se/C demonstrates a reversible capacity of 253.5 mAh/g at a current density of 5 A/g and a high specific capacity of 343.9 mAh/g at 1 A/g after 100 cycles in sodium-ion batteries (SIBs). Furthermore, a full cell is assembled with HT-FeSe2/Se/C as the anode, and a vanadium-based cathode (Na3V2(PO4)2O2F), showcasing a high specific capacity of 118.1 mAh/g at 2 A/g. The excellent performance of HT-FeSe2/Se/C may hint at future material design strategies and advance the development and application of SIBs.

16.
J Colloid Interface Sci ; 664: 381-388, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38479274

ABSTRACT

Na3MnTi(PO4)3 (NMTP) emerges as a promising cathode material with high-performance for sodium-ion batteries (SIBs). Nevertheless, its development has been limited by several challenges, including poor electronic conductivity, the Mn3+ Jahn-Teller effect, and the presence of a Na+/Mn2+ cation mixture. To address these issues, we have developed a cation/anion-dual regulation strategy to activate the redox reactions involving manganese, thereby significantly enhancing the performance of NMTP. This strategy simultaneously enhances the structural dynamics and facilitates rapid ion transport at high rates by inducing the formation of sodium vacancy. The combined effects of these modifications lead to a substantial improvement in specific capacity (79.1 mAh/g), outstanding high-rate capabilities (35.9 mAh/g at 10C), and an ultralong cycle life (only 0.040 % capacity attenuation per cycle over 250 cycles at 1C for Na3.34Mn1.2Ti0.8(PO3.98F0.02)3) when used as a cathode material in SIBs. Furthermore, its performance in full cell demonstrates impressive rate capability (44.4 mAh/g at 5C) and exceptional cycling stability (with only 0.116 % capacity decay per cycle after 150 cycles at 1C), suggesting its potential for practical applications. This work presents a dual regulation strategy targeting different sites, offering a significant advancement in the development of NASICON phosphate cathodes for SIBs.

17.
J Colloid Interface Sci ; 664: 607-616, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38490036

ABSTRACT

Expanded graphite (EG) stands out as a promising material for the negative electrode in potassium-ion batteries. However, its full potential is hindered by the limited diffusion pathway and storage sites for potassium ions, restricting the improvement of its electrochemical performance. To overcome this challenge, defect engineering emerges as a highly effective strategy to enhance the adsorption and reaction kinetics of potassium ions on electrode materials. This study delves into the specific effectiveness of defects in facilitating potassium storage, exploring the impact of defect-rich structures on dynamic processes. Employing ball milling, we introduce surface defects in EG, uncovering unique effects on its electrochemical behavior. These defects exhibit a remarkable ability to adsorb a significant quantity of potassium ions, facilitating the subsequent intercalation of potassium ions into the graphite structure. Consequently, this process leads to a higher potassium voltage. Furthermore, the generation of a diluted stage compound is more pronounced under high voltage conditions, promoting the progression of multiple stage reactions. Consequently, the EG sample post-ball milling demonstrates a notable capacity of 286.2 mAh g-1 at a current density of 25 mA g-1, showcasing an outstanding rate capability that surpasses that of pristine EG. This research not only highlights the efficacy of defect engineering in carbon materials but also provides unique insights into the specific manifestations of defects on dynamic processes, contributing to the advancement of potassium-ion battery technology.

18.
Heliyon ; 10(5): e26721, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38434409

ABSTRACT

Surface subsidence pits formed by mining disturbance are highly susceptible to slope instability under rainfall erosion, inducing underground debris flow disasters. To prevent and control underground debris flow disasters in a subsidence area, a test model of subsidence pit slope was established in accordance with the principle of similar simulation, and the erosion-resistant performance of moraine-cured slopes with different soil-slurry ratios and the law of runoff and sand production were investigated through the simulation of artificial rainfall and a simulation test of grouting. Results show that the initial rainfall production time increases exponentially with increasing soil-slurry ratio, while sediment production intensity decreases linearly with increasing rainfall duration. The evolution of soil erosion can be divided into five stages: impact infiltration, water-filled softening, stripping cutting, migration crossing, and steady flow equilibrium. Compared with in situ moraine, moraine particles after grouting between the generation of large amounts of Si-O-Si and Si-OH hydration products become loose and porous soil medium is transformed into a dense cemented structure. The soil-slurry ratio is 5:1, the sand-fixing effect increases by 28.8 times, the resistance of permeability increases by 11.3 times, and the grouting curing effect is remarkable. This study can provide technical support for the prevention and control of geological disasters in subsidence pits.

19.
J Exerc Sci Fit ; 22(2): 145-151, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38435333

ABSTRACT

Background: This study examined sedentary volume and bouts of Chinese primary and middle school students during different segments of a school day and determined whether gender and school level are associated with their sedentary volume and bouts. Methods: A total of 472 students participated in this study. Accelerometers were used to measure the sedentary volume and sedentary bouts of different durations (i.e., 1-4 min, 5-9 min and ≥10 min) during all segments. Results: The participants spent the majority of their time in sitting (61.7%) and sitting bouts of ≥10 min (37.3%). They spent higher percentages of time in sitting during regular classes (76.7%) and out-of-school time (54.5%), and lower during physical education (PE) classes (32.2%), lunch break (35.4%) and recess (38.0%). The highest proportions of time were in sedentary bouts of ≥10 min during regular classes (50.2%), out-of-school time (28.0%) and lunch break (18.8%), while the greatest percentages occurred in sitting bouts of 1-4 min during PE class (16.4%) and recess (18.6%). Girls and middle school students had higher percentages of sedentary volume than boys and primary school students during most segments. They spent greater proportions of time in sitting bouts of ≥10 min during regular classes, lunch break, and out-of-school time, and higher proportions in sedentary bouts of 1-4 min than boys and primary students during PE classes. Conclusion: Regular class and out-of-school time were identified as key segments for reducing sedentary volume and breaking up prolonged sitting. Interventions on interrupting prolonged sitting during lunch break should also be explored. Girls and middle school students should receive more attention in future interventions.

20.
Zhongguo Gu Shang ; 37(2): 129-34, 2024 Feb 25.
Article in Chinese | MEDLINE | ID: mdl-38425062

ABSTRACT

OBJECTIVE: To compare the effectiveness of TiRobot assisted F screw technique and inverted triangle parallel nail internal fixation in the treatment of unstable femoral neck fractures. METHODS: A retrospective analysis was conducted on 72 patients with unstable femoral neck fractures who were treated with percutaneous cannulated screw fixation assisted with TiRobot Orthopaedic robot from December 2019 to April 2021. Among them, 37 patients were treated with F screw internal fixation, including 16 males and 21 females, aged 47 to 64 years old with an average of (53.87±5.28) years old;According to Pauwels classification, there were 1 case of type Ⅰ, 19 cases of type Ⅱ, 17 cases of type Ⅲ;8 cases of combined medical diseases;17 cases of falling, 8 cases of traffic accident and 12 cases of falling from height;The time from injury to operation was 29 to 49 hours with average of (35.00±7.34) hours. Another 35 cases used internal fixation with an inverted triangle parallel nail, including 13 males and 22 females with an average age of 46 to 63 years old (52.36±5.05) years old;According to the Pauwels injury classification:there were 2 cases of type Ⅰ, 21 cases of type Ⅱ, 12 cases of type Ⅲ;6 cases of medical diseases, 15 cases of falling injury, 9 cases of traffic accident, 11 cases of falling injury;The time from injury to operation was 30 to 45 hours with an average of (33.00±6.83) h. The intraoperative blood loss, operation time, intraoperative fluoroscopy times, follow-up time, fracture healing time, postoperative complications were observed and compared between the two groups. The hip joint function was evaluated by Harris score at 6 months and 12 months after operation. RESULTS: There was no significant difference in operation time, intraoperative blood loss, intraoperative fluoroscopy times and other intraoperative data between two groups(P>0.05). Both groups were followed up regularly, and the follow-up time was 12 to 16 months. The fracture healing time and Harris score of the F screw internal fixation group were better than those of the inverted triangle parallel nail internal fixation group (P<0.05). There was 1 case of femoral neck shortening in the F screw internal fixation group, 1 case of nonunion, 1 case of nail withdrawal, and 1 case of lower extremity deep vein thrombosis in the inverted triangle internal fixation group. The incidence of complications in the F screw internal fixation group was lower than that in the inverted triangle parallel nail internal fixation group(P<0.05). CONCLUSION: Percutaneous cannulated F screw technique using Tirobot navigation positioning system is a safe and effective treatment for patients with unstable femoral neck fractures. It can significantly shorten the fracture healing time, reduce the incidence of postoperative complications, significantly improve hip joint function, and improve the quality of life.


Subject(s)
Femoral Neck Fractures , Orthopedics , Robotics , Male , Female , Humans , Middle Aged , Blood Loss, Surgical , Retrospective Studies , Quality of Life , Femoral Neck Fractures/surgery , Fracture Fixation, Internal/methods , Bone Screws , Treatment Outcome , Postoperative Complications
SELECTION OF CITATIONS
SEARCH DETAIL
...