Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Type of study
Language
Publication year range
1.
J Inflamm Res ; 14: 2253-2265, 2021.
Article in English | MEDLINE | ID: mdl-34079331

ABSTRACT

PURPOSE: Gram-negative bacteria are usually found in prostate cancer (PCa) tissues. This study aims to investigate the role of lipopolysaccharide (LPS), a glycolipid compound found in the outer membrane of gram-negative bacteria, on the migration and invasion of PCa cells, and to evaluate the protective effect of melatonin. MATERIALS AND METHODS: DU145, PC-3 and LNCaP cells were incubated with LPS in the presence or absence of melatonin. Wound healing and Transwell assays were used to analyze migration and invasion of PCa cells. RT-PCR and Western blotting were used to assess the mRNA and protein levels, respectively. Co-IP was used to analyze ß-catenin ubiquitination. RESULTS: Our results showed that LPS promoted migration and invasion of PCa cells. In addition, LPS stimulated inflammatory reaction and induced epithelial-mesenchymal transition (EMT) in PCa cells by activating several TLR4 downstream pathways. Specifically, LPS promoted NF-κB/IL-6/STAT3 signal transduction. In addition, LPS upregulated phosphorylation levels of cytoplasmic AKTSer473 and GSK-3ßSer9. Moreover, LPS induced phosphorylation of GSK-3ßSer9 in the "disruption complex", and then inhibited phosphorylation and ubiquitination of cytoplasmic ß-catenin, leading to ß-catenin nuclear translocation. Interestingly, melatonin inhibited invasion and migration not only in LPS-stimulated but also in LPS-unstimulated PCa cells. Melatonin suppressed PCa cells migration and invasion by blocking EMT mediated by IL-6/STAT3, AKT/GSK-3ß and ß-catenin pathways. CONCLUSION: This study provides evidence that melatonin inhibits migration and invasion through blocking multiple TLR4 downstream EMT-associated pathways both in LPS-stimulated and -unstimulated PCa cells. Our results provide new insights into the role of bacterial infection in PCa metastasis and a potential therapeutic agent.

2.
Ecotoxicol Environ Saf ; 208: 111436, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33039867

ABSTRACT

Several epidemiological studies reported that chronic arsenic exposure increased risk of prostate cancer. This study aimed to investigate whether chronic NaAsO2 exposure elevates stemness and chemoresistance in prostate cancer cells. DU145 (wild-type p53) and PC-3 (p53-null) cells were exposed to NaAsO2 (2 µmol/L) for 30 generations. IC50s to docetaxel and cisplatin were increased in NaAsO2-exposed DU145 and PC-3 cells. The number of tumor spheres was elevated in NaAsO2-exposed DU145 and PC-3 cells. Nanog, SOX-2 and ALDH1A1, three markers of cancer stemness, were upregulated in NaAsO2-exposed PC-3 spheres. Moreover, NaAsO2-exposed DU145 and PC-3 cells were arrested in G2/M phase. Histone H2AX phosphorylation on Ser139, an indicator for DNA double-strand break, was upregulated in NaAsO2-exposed DU145 and PC-3 cells. ATM phosphorylation on Ser1981, a key sensor of genotoxic stress, was rapidly elevated in NaAsO2-exposed DU145 cells. Phosphor-p53, a downstream molecule of ATM signaling, and p21, a direct target of p53, were upregulated in NaAsO2-exposed DU145 cells. Unexpectedly, p21 was also elevated in NaAsO2-exposed p53-null PC-3 cells. Antioxidant NAC alleviated NaAsO2-induced ATM phosphorylation, cell cycle arrest, and subsequent stemness enhancement and chemoresistance in both DU145 and PC-3 cells. These results suggest that ROS-mediated genotoxic stress is involved in NaAsO2-induced cell cycle arrest, stemness enhancement and chemoresistance of prostate cancer cells in a p53-independent manner.


Subject(s)
DNA Damage/physiology , Reactive Oxygen Species/metabolism , Apoptosis , Arsenates/toxicity , Cell Cycle , Cell Cycle Checkpoints/physiology , Cell Line, Tumor , Drug Resistance, Neoplasm/physiology , Humans , Male , Phosphorylation , Prostatic Neoplasms/metabolism , Signal Transduction , Tumor Suppressor Protein p53/genetics
3.
Br J Nutr ; 125(8): 841-850, 2021 04 28.
Article in English | MEDLINE | ID: mdl-32812524

ABSTRACT

Renal fibrosis is common especially in the elderly population. Recently, we found that vitamin D deficiency caused prostatic hyperplasia. This study aimed to investigate whether vitamin D deficiency promotes renal fibrosis and functional impairment. All mice except controls were fed with vitamin D-deficient (VDD) diets, beginning from their early life. The absolute and relative kidney weights on postnatal week 20 were decreased in VDD diet-fed male pups but not in female pups. A mild pathological damage was observed in VDD diet-fed male pups but not in females. Further analysis showed that VDD-induced pathological damage was aggravated, accompanied by renal dysfunction in 40-week-old male pups. An obvious collagen deposition was observed in VDD diet-fed 40-week-old male pups. Moreover, renal α-smooth muscle actin (α-SMA), a marker of epithelial-mesenchymal transition (EMT), and Tgf-ß mRNA were up-regulated. The in vitro experiment showed that 1,25-dihydroxyvitamin D3 alleviated transforming growth factor-ß1 (TGF-ß1)-mediated down-regulation of E-cadherin and inhibited TGF-ß1-evoked up-regulation of N-cadherin, vimentin and α-SMA in renal epithelial HK-2 cells. Moreover, 1,25-dihydroxyvitamin D3 suppressed TGF-ß1-evoked Smad2/3 phosphorylation in HK-2 cells. These results provide experimental evidence that long-term vitamin D deficiency promotes renal fibrosis and functional impairment, at least partially, through aggravating TGF-ß/Smad2/3-mediated EMT in middle-aged male mice.


Subject(s)
Kidney Diseases/etiology , Kidney/pathology , Kidney/physiopathology , Vitamin D Deficiency/complications , Actins/metabolism , Animals , Antigens, CD/metabolism , Cadherins/metabolism , Calcitriol/pharmacology , Cell Line , Cholecalciferol/pharmacology , Epithelial-Mesenchymal Transition , Female , Fibrosis/etiology , Fibrosis/pathology , Humans , Kidney Diseases/pathology , Kidney Diseases/physiopathology , Kidney Tubules, Proximal/metabolism , Male , Mice , Mice, Inbred ICR , Organ Size , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology , Vimentin/metabolism , Vitamin D/analogs & derivatives , Vitamin D/blood , Vitamin D Deficiency/pathology , Vitamin D Deficiency/physiopathology
4.
Int Immunopharmacol ; 82: 106346, 2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32120344

ABSTRACT

Increasing evidence suggests that infection promotes the initiation and progression of prostate cancer. This study investigated the effects of lipopolysaccharide (LPS), a major component of Gram-negative bacilli, on proliferation, migration and invasion of prostate cancer cells and the protective effects of 1α,25(OH)2D3 (calcitriol). PC-3 and DU145 cells were stimulated with LPS (2.0 µg/mL) in the presence or absence of 1α,25(OH)2D3 (100 nM). Our results shown that 1α,25(OH)2D3 reduced the proportion of S phase cells in LPS-stimulated PC-3 and DU145 cells, and down-regulated the nuclear protein levels of Cyclin D1 and PCNA in LPS-stimulated PC-3 cells. In addition, 1α,25(OH)2D3 inhibited migration and invasion, as determined by wound healing and transwell assay, in LPS-stimulated PC-3 and DU145 cells. Of interest, we observed that 1α,25(OH)2D3 inhibits NF-κB activation and subsequent synthesis and secretion of IL-6 and IL-8 by promoting VDR and NF-κB p65 interaction. Surprisingly, 1α,25(OH)2D3 blocks nuclear translocation of pSTAT3 by promoting physical interaction between VDR and pSTAT3 (Tyr705) in LPS-stimulated PC-3 and DU145 cells. These results suggest that 1α,25(OH)2D3 inhibits LPS-induced proliferation, migration and invasion in prostate cancer cells by directly and indirectly blocking STAT3 signal transduction.

5.
Article in English | WPRIM (Western Pacific) | ID: wpr-812141

ABSTRACT

To investigate the non-alkaloidal chemical constituents of the stems and leaves of Melodinus suaveolens and their antibacterial activities. Compounds were isolated and purified by repeated silica gel, Sephadex LH-20, RP18, and preparative HPLC. Their structures were elucidated by comparison with published spectroscopic data, as well as on the basis of extensive spectroscopic analysis. The antibacterial screening assays were performed by the dilution method. Fourteen compounds were isolated, and identified as lycopersene (1), betulinic aldehyde (2), 3β-acetoxy-22,23,24,25,26,27-hexanordammaran-20-one (3), 3a-acetyl-2, 3, 5-trimethyl-7a-hydroxy-5-(4,8,12-trimethyl-tridecanyl)-1,3a,5,6,7,7a-hexahydro-4-oxainden-1-one (4), 3β-hydroxy-28-norlup-20(29)-ene-17β-hydroperoxide (5), 3β-hydroxy-28-norlup-20(29)-ene-17α-hydroperoxide (6), β-sitosterol (7), 28-nor-urs-12-ene-3β, 17β-diol (8), α-amyrin (9), ergosta-4,6,8(14),22-tetraen-3-one (10), 3β-hydroxy-urs-11-en-28,13β-olide (11), betulin (12), obtusalin (13), and ursolic acid (14). Among the isolates, compounds 1, 2, 6, 8, 10, and 14 showed potent antibacterial activities against the four bacteria. This is the first report of the antibacterial activity of the constituents of Melodinus suaveolens.


Subject(s)
Anti-Bacterial Agents , Chemistry , Apocynaceae , Chemistry , Drugs, Chinese Herbal , Chemistry , Plant Leaves , Chemistry , Plant Stems , Chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...