Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Front Cell Infect Microbiol ; 14: 1385562, 2024.
Article in English | MEDLINE | ID: mdl-38846353

ABSTRACT

Background: Lower respiratory tract infections represent prevalent ailments. Nonetheless, current comprehension of the microbial ecosystems within the lower respiratory tract remains incomplete and necessitates further comprehensive assessment. Leveraging the advancements in metagenomic next-generation sequencing (mNGS) technology alongside the emergence of machine learning, it is now viable to compare the attributes of lower respiratory tract microbial communities among patients across diverse age groups, diseases, and infection types. Method: We collected bronchoalveolar lavage fluid samples from 138 patients diagnosed with lower respiratory tract infections and conducted mNGS to characterize the lung microbiota. Employing various machine learning algorithms, we investigated the correlation of key bacteria in patients with concurrent bronchiectasis and developed a predictive model for hospitalization duration based on these identified key bacteria. Result: We observed variations in microbial communities across different age groups, diseases, and infection types. In the elderly group, Pseudomonas aeruginosa exhibited the highest relative abundance, followed by Corynebacterium striatum and Acinetobacter baumannii. Methylobacterium and Prevotella emerged as the dominant genera at the genus level in the younger group, while Mycobacterium tuberculosis and Haemophilus influenzae were prevalent species. Within the bronchiectasis group, dominant bacteria included Pseudomonas aeruginosa, Haemophilus influenzae, and Klebsiella pneumoniae. Significant differences in the presence of Pseudomonas phage JBD93 were noted between the bronchiectasis group and the control group. In the group with concomitant fungal infections, the most abundant genera were Acinetobacter and Pseudomonas, with Acinetobacter baumannii and Pseudomonas aeruginosa as the predominant species. Notable differences were observed in the presence of Human gammaherpesvirus 4, Human betaherpesvirus 5, Candida albicans, Aspergillus oryzae, and Aspergillus fumigatus between the group with concomitant fungal infections and the bacterial group. Machine learning algorithms were utilized to select bacteria and clinical indicators associated with hospitalization duration, confirming the excellent performance of bacteria in predicting hospitalization time. Conclusion: Our study provided a comprehensive description of the microbial characteristics among patients with lower respiratory tract infections, offering insights from various perspectives. Additionally, we investigated the advanced predictive capability of microbial community features in determining the hospitalization duration of these patients.


Subject(s)
Bacteria , Bronchoalveolar Lavage Fluid , High-Throughput Nucleotide Sequencing , Machine Learning , Metagenomics , Microbiota , Respiratory Tract Infections , Humans , Metagenomics/methods , Middle Aged , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Aged , Male , Female , Adult , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bronchoalveolar Lavage Fluid/microbiology , Microbiota/genetics , Young Adult , Bronchiectasis/microbiology , Aged, 80 and over , Metagenome , Adolescent , Lung/microbiology , Lung/virology , Hospitalization
2.
Ecotoxicol Environ Saf ; 277: 116314, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38642409

ABSTRACT

Fine particulate matter (PM2.5) has been extensively implicated in the pathogenesis of neurodevelopmental disorders, but the underlying mechanism remains unclear. Recent studies have revealed that PM2.5 plays a role in regulating iron metabolism and redox homeostasis in the brain, which is closely associated with ferroptosis. In this study, the role and underlying mechanism of ferroptosis in PM2.5-induced neurotoxicity were investigated in mice, primary hippocampal neurons, and HT22 cells. Our findings demonstrated that exposure to PM2.5 could induce abnormal behaviors, neuroinflammation, and neuronal loss in the hippocampus of mice. These effects may be attributed to ferroptosis induced by PM2.5 exposure in hippocampal neurons. RNA-seq analysis revealed that the upregulation of iron metabolism-related protein Heme Oxygenase 1 (HO-1) and the activation of mitophagy might play key roles in PM2.5-induced ferroptosis in HT22 cells. Subsequent in vitro experiments showed that PM2.5 exposure significantly upregulated HO-1 in primary hippocampal neurons and HT22 cells. Moreover, PM2.5 exposure activated mitophagy in HT22 cells, leading to the loss of mitochondrial membrane potential, alterations in the expression of autophagy-related proteins LC3, P62, and mTOR, as well as an increase in mitophagy-related protein PINK1 and PARKIN. As a heme-degradation enzyme, the upregulation of HO-1 promotes the release of excess iron, genetically inhibiting the upregulation of HO-1 in HT22 cells could prevent both PM2.5-induced mitophagy and ferroptosis. Furthermore, pharmacological inhibition of mitophagy in HT22 cells reduced levels of ferrous ions and lipid peroxides, thereby preventing ferroptosis. Collectively, this study demonstrates that HO-1 mediates PM2.5-induced mitophagy-dependent ferroptosis in hippocampal neurons, and inhibiting mitophagy or ferroptosis may be a key therapeutic target to ameliorate neurotoxicity following PM2.5 exposure.


Subject(s)
Ferroptosis , Heme Oxygenase-1 , Hippocampus , Mitophagy , Neurons , Particulate Matter , Up-Regulation , Animals , Particulate Matter/toxicity , Ferroptosis/drug effects , Mitophagy/drug effects , Hippocampus/drug effects , Hippocampus/pathology , Neurons/drug effects , Neurons/pathology , Mice , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Up-Regulation/drug effects , Male , Mice, Inbred C57BL , Air Pollutants/toxicity , Membrane Proteins
3.
Cancer Gene Ther ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553639

ABSTRACT

This comprehensive review explores the intricate mechanisms of PANoptosis and its implications in cancer. PANoptosis, a convergence of apoptosis, pyroptosis, and necroptosis, plays a crucial role in cell death and immune response regulation. The study delves into the molecular pathways of each cell death mechanism and their crosstalk within PANoptosis, emphasizing the shared components like caspases and the PANoptosome complex. It highlights the significant role of PANoptosis in various cancers, including respiratory, digestive, genitourinary, gliomas, and breast cancers, showing its impact on tumorigenesis and patient survival rates. We further discuss the interwoven relationship between PANoptosis and the tumor microenvironment (TME), illustrating how PANoptosis influences immune cell behavior and tumor progression. It underscores the dynamic interplay between tumors and their microenvironments, focusing on the roles of different immune cells and their interactions with cancer cells. Moreover, the review presents new breakthroughs in cancer therapy, emphasizing the potential of targeting PANoptosis to enhance anti-tumor immunity. It outlines various strategies to manipulate PANoptosis pathways for therapeutic purposes, such as targeting key signaling molecules like caspases, NLRP3, RIPK1, and RIPK3. The potential of novel treatments like immunogenic PANoptosis-initiated therapies and nanoparticle-based strategies is also explored.

4.
Respir Res ; 25(1): 90, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355515

ABSTRACT

BACKGROUND: Exposure to PM2.5 has been implicated in a range of detrimental health effects, particularly affecting the respiratory system. However, the precise underlying mechanisms remain elusive. METHODS: To address this objective, we collected ambient PM2.5 and administered intranasal challenges to mice, followed by single-cell RNA sequencing (scRNA-seq) to unravel the heterogeneity of neutrophils and unveil their gene expression profiles. Flow cytometry and immunofluorescence staining were subsequently conducted to validate the obtained results. Furthermore, we assessed the phagocytic potential of neutrophils upon PM2.5 exposure using gene analysis of phagocytosis signatures and bacterial uptake assays. Additionally, we utilized a mouse pneumonia model to evaluate the susceptibility of PM2.5-exposed mice to Pseudomonas aeruginosa infection. RESULTS: Our study revealed a significant increase in neutrophil recruitment within the lungs of PM2.5-exposed mice, with subclustering of neutrophils uncovering subsets with distinct gene expression profiles. Notably, exposure to PM2.5 was associated with an expansion of PD-L1high neutrophils, which exhibited impaired phagocytic function dependent upon PD-L1 expression. Furthermore, PM2.5 exposure was found to increase the susceptibility of mice to Pseudomonas aeruginosa, due in part to increased PD-L1 expression on neutrophils. Importantly, monoclonal antibody targeting of PD-L1 significantly reduced bacterial burden, dissemination, and lung inflammation in PM2.5-exposed mice upon Pseudomonas aeruginosa infection. CONCLUSIONS: Our study suggests that PM2.5 exposure promotes expansion of PD-L1high neutrophils with impaired phagocytic function in mouse lungs, contributing to increased vulnerability to bacterial infection, and therefore targeting PD-L1 may be a therapeutic strategy for reducing the harmful effects of PM2.5 exposure on the immune system.


Subject(s)
Pneumonia , Pseudomonas Infections , Animals , Mice , Neutrophils/metabolism , Particulate Matter/toxicity , Pseudomonas Infections/microbiology , B7-H1 Antigen/metabolism , Lung , Pneumonia/metabolism , Pseudomonas aeruginosa
5.
Ecotoxicol Environ Saf ; 272: 116067, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38325270

ABSTRACT

In order to comprehend the underlying mechanisms contributing to the development and exacerbation of asthma resulting from exposure to fine particulate matter (PM2.5), we established an asthmatic model in fat mass and obesity-associated gene knockdown mice subjected to PM2.5 exposure. Histological analyses using hematoxylin-eosin (HE) and Periodic Acid-Schiff (PAS) staining revealed that the down-regulation of the fat mass and obesity-associated gene (Fto) expression significantly ameliorated the pathophysiological alterations observed in asthmatic mice exposed to PM2.5. Furthermore, the down-regulation of Fto gene expression effectively attenuated damage to the airway epithelial barrier. Additionally, employing in vivo and in vitro models, we elucidated that PM2.5 modulated FTO expression by inducing oxidative stress. Asthmatic mice exposed to PM2.5 exhibited elevated Fto expression, which correlated with increased levels of reactive oxygen species. Similarly, when cells were exposed to PM2.5, FTO expression was up-regulated in a ROS-dependent manner. Notably, the administration of N-acetyl cysteine successfully reversed the PM2.5-induced elevation in FTO expression. Concurrently, we performed transcriptome-wide Methylated RNA immunoprecipitation Sequencing (MeRIP-seq) analysis subsequent to PM2.5 exposure. Through the implementation of Gene Set Enrichment Analysis and m6A-IP-qPCR, we successfully identified inhibitor of nuclear factor kappa B kinase subunit beta (IKBKB) as a target gene regulated by FTO. Interestingly, exposure to PM2.5 led to increased expression of IKBKB, while m6A modification on IKBKB mRNA was reduced. Furthermore, our investigation revealed that PM2.5 also regulated IKBKB through oxidative stress. Significantly, the down-regulation of IKBKB effectively mitigated epithelial barrier damage in cells exposed to PM2.5 by modulating nuclear factor-kappa B (NF-κB) signaling. Importantly, we discovered that decreased m6A modification on IKBKB mRNA facilitated by FTO enhanced its stability, consequently resulting in up-regulation of IKBKB expression. Collectively, our findings propose a novel role for FTO in the regulation of IKBKB through m6A-dependent mRNA stability in the context of PM2.5-induced oxidative stress. Therefore, it is conceivable that the utilization of antioxidants or inhibition of FTO could represent potential therapeutic strategies for the management of asthma exacerbated by PM2.5 exposure.


Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Asthma , I-kappa B Kinase , Animals , Mice , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Asthma/chemically induced , Asthma/genetics , I-kappa B Kinase/metabolism , Obesity , Oxidative Stress/genetics , Particulate Matter/toxicity , RNA Stability , RNA, Messenger/metabolism
6.
Pharmacol Res ; 200: 107070, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38218353

ABSTRACT

Fibrotic hypersensitivity pneumonitis (FHP) is a fatal interstitial pulmonary disease with limited treatment options. Lung macrophages are a heterogeneous cell population that exhibit distinct subsets with divergent functions, playing pivotal roles in the progression of pulmonary fibrosis. However, the specific macrophage subpopulations and underlying mechanisms involved in the disease remain largely unexplored. In this study, a decision tree model showed that matrix metalloproteinase-14 (MMP14) had higher scores for important features in the up-regulated genes in macrophages from mice exposed to the Saccharopolyspora rectivirgula antigen (SR-Ag). Using single-cell RNA sequencing (scRNA-seq) analysis of hypersensitivity pneumonitis (HP) mice profiles, we identified MMP14high macrophage subcluster with a predominant M2 phenotype that exhibited higher activity in promoting fibroblast-to myofibroblast transition (FMT). We demonstrated that suppressing toll-like receptor 2 (TLR2) and nuclear factor kappa-B (NF-κB) could attenuate MMP14 expression and exosome secretion in macrophages stimulation with SR-Ag. The exosomes derived from MMP14-overexpressing macrophages were found to be more effective in regulating the transition of fibroblasts through exosomal MMP14. Importantly, it was observed that the transfer of MMP14-overexpressing macrophages into mice promoted lung inflammation and fibrosis induced by SR-Ag. NSC-405020 binding to the hemopexin domain (PEX) of MMP-14 ameliorated lung inflammation and fibrosis induced by SR-Ag in mice. Thus, MMP14-overexpressing macrophages may be an important mechanism contributing to the exacerbation of allergic reactions. Our results indicated that MMP14 in macrophages has the potential to be a therapeutic target for HP.


Subject(s)
Alveolitis, Extrinsic Allergic , Pneumonia , Pulmonary Fibrosis , Mice , Animals , Pulmonary Fibrosis/metabolism , Matrix Metalloproteinase 14/genetics , Matrix Metalloproteinase 14/metabolism , Alveolitis, Extrinsic Allergic/metabolism , Alveolitis, Extrinsic Allergic/pathology , Macrophages/metabolism , Pneumonia/metabolism , Mice, Inbred C57BL
7.
Int Immunopharmacol ; 125(Pt B): 111209, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37976599

ABSTRACT

BACKGROUND: PM2.5 exposure increases asthma exacerbation risk and worsens airway inflammation and mucus secretion, but the underlying mechanisms, especially the epigenetic modification changes, are not fully understood. METHODS: ATAC-seq was conducted in Beas-2B cells to explore the differential chromatin accessibilities before and after exposure to PM2.5. RNA-seq was applied to screen the differentially expressed genes (DEGs) as well. The integrated analysis of ATAC-seq and RNA-seq was performed. The key up-regulated genes in the ferroptosis signaling pathway were identified by combined analysis with the FerrDb database and then verified. Meanwhile, to access the role of PM2.5-induced ferroptosis in asthma mice, house dust mites (HDM) were employed to conduct an allergic asthma mice model, and the ferroptosis-specific inhibitor (Ferrostatin-1, Fer-1) was used. The H&E staining, PAS staining, airway hyperresponsiveness, and bronchoalveolar lavage fluid (BALF) cell counting were used to investigate the impact of PM2.5-induced ferroptosis in asthma mice. RESULTS: A total of 4,921 regions with differential accessibility were identified, encompassing 4,031 unique genes. Among these, 250 regions exhibited increased accessibility while 4,671 regions displayed reduced accessibility. Through the integrated analysis of ATAC-seq and RNA-seq, ferroptosis was determined as the key enriched pathway based on up-regulated DEGs and increased chromatin accessibilities. Furthermore, the decreased cell viability, accelerated lipid peroxide and morphological changes in mitochondria observed upon PM2.5 exposure were rescued by Fer-1, which are indicative of ferroptosis. By overlapping with ferroptosis-related genes from the FerrDb database, FTH1 and FTL were identified as the prominent up-regulated genes with increased chromatin accessibility in ferroptosis pathway. In addition, ChIP-qPCR analysis indicated that histone modification like H3K4me3 and H3K27ac positively regulated FTH1 and FTL expression. Subsequently, in PM2.5-exposed asthmatic mice, inhibition of ferroptosis effectively attenuated airway inflammation and mucus secretion. CONCLUSION: These findings shed light on the molecular mechanisms underlying PM2.5-induced asthma exacerbation, with epigenetic modifications playing a pivotal role. Furthermore, it suggests the therapeutic potential of targeting ferroptosis as an intervention strategy.


Subject(s)
Asthma , Ferroptosis , Animals , Mice , Chromatin Immunoprecipitation Sequencing , RNA-Seq , Ferroptosis/genetics , Asthma/chemically induced , Asthma/genetics , Chromatin , Inflammation , Particulate Matter/toxicity
8.
Front Physiol ; 14: 1236651, 2023.
Article in English | MEDLINE | ID: mdl-37538379

ABSTRACT

Lung diseases are a major global health problem, affecting millions of people worldwide. Recent research has highlighted the critical role that mitochondrial quality control plays in respiratory-related diseases, including chronic obstructive pulmonary disease (COPD), lung cancer, and idiopathic pulmonary fibrosis (IPF). In this review, we summarize recent findings on the involvement of mitochondrial quality control in these diseases and discuss potential therapeutic strategies. Mitochondria are essential organelles for energy production and other cellular processes, and their dysfunction is associated with various diseases. The quality control of mitochondria involves a complex system of pathways, including mitophagy, mitochondrial biogenesis, fusion/fission dynamics, and regulation of gene expression. In COPD and lung cancer, mitochondrial quality control is often involved in disease development by influencing oxidative stress and apoptosis. In IPF, it appears to be involved in the disease process by participating in the cellular senescence process. Mitochondrial quality control is a promising target for therapeutic interventions in lung diseases. However, there are conflicting reports on different pathological processes, such as the role of mitochondrial autophagy in lung cancer, which pose difficulties in the study of targeted mitochondrial quality control drugs. Additionally, there seems to be a delicate balance between the mitochondrial quality control processes in the physiological state. Emerging evidence suggests that molecules such as PTEN-induced putative kinase 1 (PINK1), parkin RBR E3 ubiquitin protein ligase (PRKN), dynamin-related protein 1 (DRP1), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1-α), as well as the signaling pathways they affect, play an important role in respiratory-related diseases. Targeting these molecules and pathways could contribute to the development of effective treatments for lung diseases. In conclusion, the involvement of mitochondrial quality control in lung diseases presents a promising new avenue for disease treatment. Further research is needed to better understand the complex mechanisms involved in the pathogenesis of respiratory diseases and to develop targeted therapies that could improve clinical outcomes.

9.
Hum Vaccin Immunother ; 19(2): 2246542, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37614152

ABSTRACT

A good safety and immunogenicity profile was reported in Phase I and II clinical trials of inactivated SARS-CoV-2 vaccines. Here, we report two cases associated with vaccine-associated adverse events, including one patient with fever and another with anaphylactic shock resulting from inactivated SARS-CoV-2 vaccination. Cell sub-types and the importance of genetic characteristics were assessed using single-cell mRNA sequencing and machine learning. Overall, the patient with fever showed a significant increase in the numbers of cytotoxic CD8 T cells and MKI67high CD8 T cells. A potential concurrent infection with the Epstein-Barr virus enhanced interferon type I responses to vaccination against the virus. STAT1, E2F1, YBX1, and E2F7 played a key role in the transcription regulation of MKI67high CD8 T cells. In contrast, the patient with allergic shock displayed predominant increases in the numbers of S100A9high monocytes, activated CD4 T cells, and PPBPhigh megakaryocytes. The decision tree showed that LYZ and S100A8 in S100A9high monocytes contributed to the degranulation of neutrophils and activation of neutrophils involved in allergic shock. PPBP and PF4 were major contributors to platelet degranulation. These findings highlight the diversity of adverse reactions following inactivated SARS-CoV-2 vaccination and show the emerging role of cellular subtypes and central genes in vaccine-associated adverse reactions.


The identification of cell sub-types may help in the diagnosis of COVID-19 vaccine-related adverse events.COVID-19 vaccination-related acute pulmonary edema may induce a higher risk of thrombosis.The long-term fever after vaccination may attribute to the excessive type I interferon responses.


Subject(s)
COVID-19 Vaccines , Humans , Male , Female , Adult , COVID-19 Vaccines/adverse effects , Fever/immunology , Fever/pathology , Pulmonary Edema/immunology , Pulmonary Edema/pathology , CD8-Positive T-Lymphocytes/cytology , Cell Proliferation , Megakaryocytes/pathology , Single-Cell Gene Expression Analysis , B-Lymphocytes/cytology , Monocytes/cytology , Anaphylaxis/immunology , Anaphylaxis/pathology
10.
Acta Biochim Biophys Sin (Shanghai) ; 55(10): 1650-1658, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37249336

ABSTRACT

Neuritin plays a key role in neural development and regeneration by promoting neurite outgrowth and synapse maturation. Our previous research revealed the mechanism by which neuritin inhibits Notch signaling through interaction with neuralized-like 1 (Neurl1) to promote neurite growth. However, how neuritin regulates Notch signaling through Neurl1 has not been elucidated. Here, we first confirm that neuritin is an upstream regulator of Neurl1 and inhibits Notch signaling through Neurl1. Neurl1 is an E3 ubiquitin ligase that can promote ubiquitination and endocytosis of the Notch1 ligand Jagged1. Therefore, we observe the effect of neuritin on the ligase activity of Neurl1. The results indicate that neuritin inhibits Neurl1 activity by reducing the ubiquitination level and endocytosis of the target protein Jagged1. Moreover, we find that decreased activity of Neurl1 results in reduced expression of Notch receptor Notch intracellular domain (NICD) and downstream target gene hairy and enhancer of split-1 ( HES1). Furthermore, we investigate how neuritin affects Neurl1 enzyme activity. The results show that neuritin not only weakens the affinity between Neurl1 and Jagged1 but also promotes the degradation of Neurl1 by the 26S proteasome pathway. Taken together, our results suggest that neuritin negatively regulates Notch signaling by inhibiting the activity of Neurl1, promoting the degradation of Neurl1 and weakening the affinity of Neurl1 for Jagged1. Our study clarifies the molecular mechanisms of neuritin in regulating the Notch signaling pathway and provides new clues about how neuritin mediates neural regeneration and plasticity.


Subject(s)
Nerve Regeneration , Neuronal Plasticity , Receptors, Notch , Ubiquitin-Protein Ligases , Ligands , Nerve Regeneration/genetics , Neuronal Plasticity/genetics , Receptor, Notch1/metabolism , Receptors, Notch/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
11.
Ecotoxicol Environ Saf ; 244: 114039, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36049333

ABSTRACT

BACKGROUND: Evidence suggests that exposure to PM2.5 increased hospitalization and mortality rates of respiratory diseases. However, the potential biomarkers and targets associated with PM2.5-induced lung dysfunction are not fully discovered. METHODS: Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and HALLMARK enrichment analysis of the RNA-seq data (Beas-2B cells treated with PM2.5) were applied. Gene set enrichment analysis (GSEA) was performed to identify the biological processes correlated with autophagy. Three gene expression profile datasets (GSE158954, GSE155616 and GSE182199) were downloaded from the Gene Expression Omnibus (GEO) database to identify the potential targets. PM2.5-exposed mice were constructed. Real-time qPCR, siRNA transfection, western blot, immunofluorescence, and pathological staining were applied for validation both in vitro and in vivo studies. RESULTS: GO, KEGG and HALLMARK enrichment based on RNA-seq data showed that the differentially expressed genes (DEGs) were associated with autophagy like lysosome and macroautophagy. GSEA analysis revealed that PM2.5 was positively correlated with autophagy-related biological processes compared with control group. Venn diagrams identified IL24 was upregulated in our data as well as in these three datasets (GSE158954, GSE155616 and GSE182199) after PM2.5 exposure. Consistent with the analysis, activation of autophagy by PM2.5 was validated in vivo and in vitro. In PM2.5-exposed mice, lung pathological changes were observed, including airway inflammation and mucus secretion. The mRNA and protein levels of the key gene, IL24, were significantly increased. Moreover, Bafilomycin A1, the inhibitor of autophagy, inhibited the autophagy and ameliorated lung injury induced by PM2.5. Furthermore, downregulation of IL24 decreased autophagy activity. Meanwhile, IL24 was regulated by mTOR signaling. CONCLUSIONS: In summary, we discovered a potential relationship between IL24 and autophagy during PM2.5 exposure. IL24 might be a novel potential biomarker or therapeutic target in PM2.5 caused lung dysfunction through regulation of autophagy.


Subject(s)
Cytokines/metabolism , Gene Expression Profiling , Particulate Matter , Animals , Autophagy/genetics , Lung , Mice , Particulate Matter/toxicity , RNA, Messenger , RNA, Small Interfering , TOR Serine-Threonine Kinases , Transcriptome
12.
Pharmacol Res ; 182: 106286, 2022 08.
Article in English | MEDLINE | ID: mdl-35662628

ABSTRACT

Pulmonary fibrosis (PF) is the pathological change of end-stage interstitial lung diseases with high mortality and limited therapeutic options. Lung macrophages have distinct subsets with divergent functions, and play critical roles in the pathogenesis of PF. In this study, integrative analysis of lung single-cell and bulk RNA-seq data from patients with fibrotic hypersensitivity pneumonitis and idiopathic pulmonary fibrosis was utilized to identify particular macrophage subsets during the development of PF. We find a specific macrophage subpopulation highly expressing PLA2G7 in fibrotic lungs. We performed additional single-cell RNA-seq analysis to identify analogous macrophage population in bleomycin (BLM)-induced mouse pulmonary fibrosis models. By in vitro and in vivo experiments, we further reveal the pro-fibrotic role for this PLA2G7high macrophage subset in fibroblast-to-myofibroblast transition (FMT) during pulmonary fibrosis. PLA2G7 promotes FMT via LPC/ATX/LPA/LPA2 axis in macrophages. Moreover, PLA2G7 is regulated by STAT1, and pharmacological inhibition of PLA2G7 by Darapladib ameliorates pulmonary fibrosis in BLM-induced mice. The results of this study support the view that PLA2G7high macrophage subpopulation contributes importantly to the pathogenesis of PF, which provides a potential way for targeted therapy.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase , Idiopathic Pulmonary Fibrosis , Macrophages , 1-Alkyl-2-acetylglycerophosphocholine Esterase/adverse effects , 1-Alkyl-2-acetylglycerophosphocholine Esterase/genetics , 1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , Animals , Bleomycin , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/genetics , Lung , Mice , Mice, Inbred C57BL , Sequence Analysis, RNA , Single-Cell Analysis
13.
Environ Pollut ; 308: 119607, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35718042

ABSTRACT

Fine particulate matter 2.5 (PM2.5) exposure leads to the progress of pulmonary disease. It has been reported that N6-methyladenosine (m6A) modification was involved in various biological processes and diseases. However, the critical role of m6A modification in pulmonary disease during PM2.5 exposure remains elusive. Here, we revealed that lung inflammation and mucus production caused by PM2.5 were associated with m6A modification. Both in vivo and in vitro assays demonstrated that PM2.5 exposure elevated the total level of m6A modification as well as the methyltransferase like 3 (METTL3) expression. Integration analysis of m6A RNA immunoprecipitation-seq (meRIP-seq) and RNA-seq discovered that METTL3 up-regulated the expression level and the m6A modification of Interleukin 24 (IL24). Importantly, we explored that the stability of IL24 mRNA was enhanced due to the increased m6A modification. Moreover, the data from qRT-PCR showed that PM2.5 also increased YTH N6-Methyladenosine RNA Binding Protein 1 (YTHDF1) expression, and the up-regulated YTHDF1 augmented IL24 mRNA translation efficiency. Down-regulation of Mettl3 reduced Il24 expression and ameliorated the pulmonary inflammation and mucus secretion in mice exposed to PM2.5. Taken together, our finding provided a comprehensive insight for revealing the significant role of m6A regulators in the lung injury via METTL3/YTHDF1-coupled epitranscriptomal regulation of IL24.


Subject(s)
Cytokines , Lung Injury , Methyltransferases , Adenosine/analogs & derivatives , Adenosine/metabolism , Animals , Cytokines/genetics , Cytokines/metabolism , Interleukins/genetics , Interleukins/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Mice , Particulate Matter/toxicity , RNA Stability , Up-Regulation
14.
Cell Death Discov ; 8(1): 38, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35091537

ABSTRACT

Fibrotic hypersensitivity pneumonitis (FHP) remains one of fatal interstitial pulmonary disease. Comprehensively dissecting the cellular heterogeneity of FHP paves the way for developing general gene therapeutic solutions for FHP. Here, utilizing an integrated strategy based on scRNA-seq, scTCR-seq, and bulk RNA-seq analysis of FHP profiles, we identified ten major cell types and 19 unique subtypes. FHP exhibited higher features of EMT and inflammation-promoting than normal control. In distinct subsets of lung macrophages in FHP, FN1high, PLA2G7high, and MS4A6Ahigh macrophages with predominant M2 phenotype exhibited higher activity of inflammatory responses and para-inflammation than other macrophages. KRT17high basal-like epithelial cells were significantly increased in FHP, and showed higher ability to induce EMT. We identified roles for ACTA2high, COL1A1high, and PLA2G2Ahigh fibroblasts in FHP, which were significantly related to interstitial fibrosis. NK cells and KLRG1+ effector CD8+ T cells had greater activity in inflammation-promoting. Our results provide a comprehensive portrait of cellular heterogeneity in FHP, and highlight the indispensable role of cell subpopulations in shaping the complexity and heterogeneity of FHP. These subpopulations are potentially key players for FHP pathogenesis.

15.
J Asthma Allergy ; 14: 1411-1423, 2021.
Article in English | MEDLINE | ID: mdl-34848976

ABSTRACT

BACKGROUND: Exposure to air pollutants cause exacerbation of asthma, but the experimental evidence and the mechanisms still need to be collected and addressed. METHODS: Asthma model was constructed by ovalbumin (OVA) combined with or without airborne fine particulate matter 2.5 (PM2.5) exposure. Lung sections were stained by hematoxylin-eosin staining (H&E) and Masson's trichrome. RNA-seq and gene set enrichment analysis (GSEA) was performed to identify the key pathway. TdT mediated dUTP Nick End Labeling (TUNEL) assay, real-time qPCR, Western blot, immunofluorescence and lentivirus transfection were applied for mechanism discovery. RESULTS: In this study, we found PM2.5 aggravated airway inflammation in OVA-induced asthmatic mice. RNA-seq analysis also showed that epithelial mesenchymal transition (EMT) was enhanced in OVA-induced mice exposed to PM2.5 compared with that in OVA-induced mice. In the meantime, we observed that apoptosis was significantly increased in asthmatic mice exposed to PM2.5 by using GSEA analysis, which was validated by TUNEL assay. By using bioinformatic analysis, Fas associated via death domain (FADD), a new actor in innate immunity and inflammation, was identified to be related to apoptosis, EMT and tight junction. Furthermore, we found that the transcript and protein levels of tight junction markers, E-cadherin, zonula occludens (ZO)-1 and Occludin, were decreased after PM2.5 exposure in vivo and in vitro by using RT-qPCR and immunofluorescence, with the increased expression of FADD. Moreover, down-regulation of FADD attenuated PM2.5-induced apoptosis and tight junction disruption in human airway epithelial cells. CONCLUSION: Taken together, we demonstrated that PM2.5 aggravated epithelial tight junction disruption through apoptosis mediated by up-regulation of FADD in OVA-induced model.

16.
Ecotoxicol Environ Saf ; 220: 112408, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34111662

ABSTRACT

BACKGROUND: Epidemiologic evidence suggests that PM2.5 exposure aggravates asthma, but the molecular mechanisms are not fully discovered. METHODS: Ovalbumin (OVA)-induced mice exposed to PM2.5 were constructed. Pathological staining and immunofluorescence were performed in in vivo study. Gene set enrichment analysis (GSEA) was performed to identify the pathway involved in asthma severity by using U-BIOPRED data (human bronchial biopsies) and RNA-seq data (Beas-2B cells treated with PM2.5). Lentiviruses transfection, Real-time qPCR, immunofluorescence staining and trans-epithelial electrical resistance (TEER) measurement were performed for mechanism exploration in vitro. RESULTS: PM2.5 exposure aggravated airway inflammation and mucus secretion in OVA-induced mice. Based on transcriptome analysis of mild-to-severe asthma from human bronchial biopsies, gene set enrichment analysis (GSEA) showed that up-regulated reactive oxygen species (ROS) pathway gene set and down-regulated apical junction gene set correlated with asthma severity. Consistent with the analysis of mild-to-severe asthma, after PM2.5 exposure, the ROS pathway in Beas-2B cells was up-regulated with the down-regulation of apical junction. The expression levels of genes involved in the specific gene sets were validated by using qPCR. The mRNA levels of junction genes, ZO-1, E-cadherin and Occludin, were significantly decreased in cells exposed to PM2.5. Moreover, it confirmed that inhibition of ROS recovered the expression levels of E-cadherin, Occludin and ZO-1, and ameliorated inflammation and mucus secretion in airway in OVA-induced mice exposed to PM2.5. Meanwhile, ROS level was elevated by PM2.5. By checking trans-epithelial electrical resistance (TEER) value, we also found that epithelial barrier was damaged after PM2.5 exposure. Importantly, Stanniocalcin 2 (STC2) was identified as a key gene in regulation of epithelial barrier. It showed that STC2 expression was up-regulated by PM2.5, which was recovered by NAC as well. Over-expression of STC2 could decrease the expression levels of ZO-1, Occludin and E-cadherin. Contrarily, suppression of STC2 could increase the expression levels of ZO-1, Occludin and E-cadherin reduced by PM2.5. CONCLUSIONS: By using transcriptome analysis, we revealed that STC2 played a key role in PM2.5 aggravated airway dysfunction through regulation of epithelial barrier in OVA-induced mice.


Subject(s)
Asthma/chemically induced , Disease Models, Animal , Glycoproteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Particulate Matter/adverse effects , Respiratory Mucosa/pathology , Animals , Asthma/genetics , Asthma/metabolism , Asthma/pathology , Gene Expression Profiling , Glycoproteins/genetics , Humans , Inflammation , Intercellular Signaling Peptides and Proteins/genetics , Mice , Ovalbumin/adverse effects , Reactive Oxygen Species/metabolism , Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism , Transcriptome/drug effects , Up-Regulation/drug effects
17.
Ecotoxicol Environ Saf ; 218: 112272, 2021 May 04.
Article in English | MEDLINE | ID: mdl-33962274

ABSTRACT

BACKGROUND: Particulate matter of 2.5 µm or less in diameter (PM2.5) is one of the most complex pollutants in the atmospheric environment and harmful to human health. Epidemiologic evidence suggests that asthma exacerbation is associated with PM2.5 exposure. However, the molecular mechanism of PM2.5 in the development of asthma is not fully addressed. METHODS: PM2.5 was collected from Chengdu, China, and the components were analyzed. The relationship between PM2.5 exposure and asthma severity was investigated in an Ovalbumin (OVA)-induced murine model of asthma. U-BIOPRED data from public database and our own RNA-seq data were analyzed to identify the hub genes. Real-time qPCR, immunofluorescence, immunohistochemistry and pathological staining were applied for mechanism dissection in both in vitro and in vivo studies. RESULTS: In PM2.5 samples, a total of 11 elements including major elements and trace elements were identified, 14 of the 16 Polycyclic aromatic hydrocarbons (PAHs) were detected except Acenaphthene and Fluorene. PM2.5 exposure aggravated pulmonary inflammation, mucus secretion, and neutrophils infiltration in asthma model. Based on transcriptome analysis of mild-to-severe asthma dataset, it showed that mucus secretion and neutrophil degranulation correlated with asthma severity. Moreover, NAD(P)H:quinone oxidoreductase 1 (NQO1) was screened out as a hub gene whose expression positively correlated with MUC5AC expression in patient with asthma by performing joint analysis. Furthermore, in OVA-induced asthma model and in vitro assay, it also revealed that PM2.5-induced MU5AC expression was regulated by NQO1 through neutrophil extracellular traps (NETs) caused by oxidative stress. CONCLUSION: Taken together, we discovered a potential relationship between asthma severity and PM2.5 exposure. In addition, neutrophil depletion, NETs inhibition or anti-NQO1 might be novel potential therapeutic options for treatment of PM2.5-induced mucus hyper-secretion.

18.
Epigenomics ; 12(22): 1969-1981, 2020 11.
Article in English | MEDLINE | ID: mdl-33242255

ABSTRACT

Aim: To elucidate the transcriptional characteristics of COVID-19. Materials & methods: We utilized an integrative approach to comprehensively analyze the transcriptional features of both COVID-19 patients and SARS-CoV-2 infected cells. Results: Widespread infiltration of immune cells was observed. We identified 233 genes that were codifferentially expressed in both bronchoalveolar lavage fluid and lung samples of COVID-19 patients. Functional analysis suggested upregulated genes were related to immune response such as neutrophil activation and antivirus response, while downregulated genes were associated with cell adhesion. Finally, we identified LCN2, STAT1 and UBE2L6 as core genes during SARS-CoV-2 infection. Conclusion: The identification of core genes involved in COVID-19 can provide us with more insights into the molecular features of COVID-19.


Subject(s)
COVID-19/pathology , Lipocalin-2/genetics , SARS-CoV-2/immunology , STAT1 Transcription Factor/genetics , Ubiquitin-Conjugating Enzymes/genetics , A549 Cells , Bronchoalveolar Lavage Fluid/cytology , COVID-19/immunology , Cell Adhesion/genetics , Cell Adhesion/physiology , Cell Line, Tumor , Cytokines/blood , Humans , Lung/immunology , Neutrophil Activation/genetics , Neutrophil Activation/immunology , SARS-CoV-2/genetics , Transcription, Genetic/genetics
19.
J Autoimmun ; 112: 102463, 2020 08.
Article in English | MEDLINE | ID: mdl-32303424

ABSTRACT

It has been reported that SARS-CoV-2 may use ACE2 as a receptor to gain entry into human cells, in a way similar to that of SARS-CoV. Analyzing the distribution and expression level of ACE2 may therefore help reveal underlying mechanisms of viral susceptibility and post-infection modulation. In this study, we utilized previously uploaded information on ACE2 expression in various conditions including SARS-CoA to evaluate the role of ACE2 in SARS-CoV and extrapolate that to COVID-19. We found that the expression of ACE2 in healthy populations and patients with underlying diseases was not significantly different. However, based on the elevated expression of ACE2 in cigarette smokers, we speculate that long-term smoking may be a risk factor for COVID-19. Analysis of ACE2 in SARS-CoV infected cells suggests that ACE2 is not only a receptor but is also involved in post-infection regulation, including immune response, cytokine secretion, and viral genome replication. Moreover, we constructed Protein-protein interaction (PPI) networks and identified hub genes in viral activity and cytokine secretion. Our findings may help clinicians and researchers gain more insight into the pathogenesis of SARS-CoV-2 and design therapeutic strategies for COVID-19.


Subject(s)
Betacoronavirus/metabolism , Coronavirus Infections/enzymology , Gene Expression Regulation, Enzymologic , Lung/enzymology , Peptidyl-Dipeptidase A/biosynthesis , Pneumonia, Viral/enzymology , Smoking/adverse effects , Angiotensin-Converting Enzyme 2 , COVID-19 , Coronavirus Infections/pathology , Humans , Pandemics , Pneumonia, Viral/pathology , Protein Interaction Maps , SARS-CoV-2
20.
Front Mol Neurosci ; 10: 179, 2017.
Article in English | MEDLINE | ID: mdl-28642682

ABSTRACT

Neuritin plays a key role in neural development and regeneration by promoting neurite outgrowth and synapse maturation. However, the mechanism of neuritin in modulating neurite growth has not been elucidated. Here, using yeast two-hybrid we screened and discovered the interaction of neuritin and neuralized (NEURL1), which is an important regulator that can activate Notch signaling through promoting endocytosis of Notch ligand. And then we identified the interaction of neuritin and neuralized by co-immunoprecipitation (IP) assays, and clarified that neuritin and NEURL1 were co-localized on the cell membrane of SH-SY5Y cells. Moreover, neuritin significantly suppressed Notch ligand Jagged1 (JAG1) endocytosis promoted by NEURL1, and then inhibited the activation of Notch receptor Notch intracellular domain (NICD) and decreased the expression of downstream gene hairy and enhancer of split-1 (HES1). Importantly, the effect of neuritin on inhibiting Notch signaling was rescued by NEURL1, which indicated that neuritin is an upstream and negative regulator of NEURL1 to inhibit Notch signaling through interaction with NEURL1. Notably, recombinant neuritin restored the retraction of neurites caused by activation of Notch, and neurite growth stimulated by neuritin was partially blocked by NEURL1. These findings establish neuritin as an upstream and negative regulator of NEURL1 that inhibits Notch signaling to promote neurite growth. This mechanism connects neuritin with Notch signaling, and provides a valuable foundation for further investigation of neuritin's role in neurodevelopment and neural plasticity.

SELECTION OF CITATIONS
SEARCH DETAIL
...