Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Food ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012958

ABSTRACT

This study investigated the alleviating effect of fermented ginsenosides obtained through yeast strain fermentation transformation on acute liver injury (ALI) induced by CCl4. Strains were screened for their ability to produce ß-glucosidase, the transformation ability of the strain was verified by high-performance liquid chromatography, and the Saccharomyces cerevisiae strain F6 was obtained by 26S rRNA sequencing. After fermentation by F6 strain, it was found that the content of ginsenosides Re, Rb1, and Rb2 was significantly decreased (P < 0.05), and rare ginsenosides were detected, with the content of Rh4 and Rg5 reaching 2.65 mg·g-1 and 2.56 mg·g-1. We also explored the preventive effect of fermented ginsenoside extract (FGE) on ALI. Mice were evenly divided into 9 groups as follows: control group, ALI model group, positive drug bifendate group, and treatment group, which included 3 ginsenoside extract (GE) groups and 3 FGE groups (dosage of 150, 300, and 450 mg·kg-1 b.w.). The results showed that compared with the ALI model group, FGE significantly increased the levels of glutathione peroxidase, hydroperoxidase, and superoxide dismutase and also decreased the malondialdehyde level. The levels of alanine aminotransferase, aspartate aminotransferase, and total bilirubin markers were significantly reduced, and the levels of inflammatory cytokines TNF-α, IL-6, and IL-1ß were significantly decreased. Bioinformatics analysis combined with Western blot validation explored the molecular mechanism of the effect of FGE. It was found that FGE could downregulate the expression of the p-AKT/AKT and the p-mTOR/mTOR ratios. These results suggested that FGE played an alleviative role in ALI by promoting autophagy to inhibit the AKT/mTOR signaling pathway.

2.
J Agric Food Chem ; 72(26): 14640-14652, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38885433

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease. Ginsenoside Rg2 has shown potential in treating AD, but the underlying protein regulatory mechanisms associated with ginsenoside Rg2 treatment for AD remain unclear. This study utilized scopolamine to induce memory impairment in mice, and proteomics methods were employed to investigate the potential molecular mechanism of ginsenoside Rg2 in treating AD model mice. The Morris water maze, hematoxylin and eosin staining, and Nissl staining results indicated that ginsenoside Rg2 enhanced cognitive ability and decreased neuronal damage in AD mice. Proteomics, western blot, and immunofluorescence results showed that ginsenoside Rg2 primarily improved AD mice by downregulating the expression of LGMN, LAMP1, and PSAP proteins through the regulation of the lysosomal pathway. Transmission electron microscopy and network pharmacology prediction results showed a potential connection between the mechanism of ginsenoside Rg2 treatment for AD mice and lysosomes. The comprehensive results indicated that ginsenoside Rg2 may improve AD by downregulating LGMN, LAMP1, and PSAP through the regulation of the lysosomal pathway.


Subject(s)
Ginsenosides , Lysosomes , Memory Disorders , Proteomics , Scopolamine , Animals , Ginsenosides/pharmacology , Ginsenosides/administration & dosage , Mice , Lysosomes/metabolism , Lysosomes/drug effects , Scopolamine/adverse effects , Male , Memory Disorders/drug therapy , Memory Disorders/metabolism , Memory Disorders/chemically induced , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/metabolism , Lysosomal-Associated Membrane Protein 1
3.
Int J Biol Macromol ; 258(Pt 1): 128915, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38141702

ABSTRACT

Water plays an important role in deep-frying. To assess the effects of water on oil absorption by fried crust and battered ham sausages (FCBHSs), we selected four starch types with different hydration properties: tapioca starch (TS), freeze-thawed tapioca starch (FTS), carboxymethyl tapioca starch (CMTS), and carboxymethyl freeze-thawed tapioca starch (CM-FTS). CMTS had the best hydration properties, followed by CM-FTS, FTS, and TS, respectively. CM-FTS with its medium hydration properties strengthened batter properties which reduced FCBHSs oil absorption. Low-field nuclear magnetic resonance analysis revealed that CM-FTS increased the percentages of bound and semi-bound water in the batter, thereby enhancing water retention and delaying water loss during deep-frying. Analyses of protein particle size distribution, zeta potential, disulfide bonding and microstructure revealed that CM-FTS promotes protein aggregation and the formation of a protein network structure, leading to a denser internal structure, which inhibits oil absorption. Additionally, differential scanning calorimetry analysis indicated that CM-FTS enhances the batter's thermal stability of batter, thereby rendering it more resistant to frying. However, the use of CMTS, with its strong hydration properties increased FCBHSs oil absorption. In conclusion, we propose that suitable modification of starch's hydration properties can aid in preparing deep-fried battered food characterized by low oil absorption.


Subject(s)
Cooking , Starch , Starch/chemistry , Chemical Phenomena , Water , Flour
4.
Food Chem ; 419: 136098, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37031538

ABSTRACT

An efficient decolorization method for ginseng residue oligosaccharides (GROs) using ultrasound-assisted D392 macroporous resin was developed. The decolorization effects and color differences of activated carbon adsorption, hydrogen peroxide oxidation, and resin adsorption were evaluated. The optimal conditions of the three decolorization methods for static, dynamic, ultrasound-assisted resin adsorption were compared. The results showed that ultrasound-assisted decolorization had the best decolorization effect of greatly decreasing the decolorization time to 80 min. Color difference analysis revealed the process of pigment removal during GRO decolorization. The UV-visible full-wavelength scan showed that most pigments were removed after decolorization. The characterizations by the Fourier-transform infrared spectroscopy and X-ray diffraction analysis showed that the chemical structure and crystallinity of the GROs did not change upon decolorization. In addition, the molecular weight distribution did not change significantly. This research contributes to further exploration of the structures and functions of GROs.


Subject(s)
Panax , Porosity , Panax/chemistry , Ultrasonics , Oligosaccharides/chemistry , Color
5.
J Mater Chem B ; 10(8): 1291-1300, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35141737

ABSTRACT

Immune checkpoint blockade therapy against programmed death protein-1 and its ligand (PD-1/PD-L1) has been accepted as a promising approach to activate the immune system's anti-tumor response. Although small interfering RNA (siRNA) or antibodies can block the PD-1/PD-L1 pathway, the effect of this blockade is temporary and reversible. Here, we developed a nano-delivery system to achieve permanent disruption of the PD-L1 gene based on Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) gene editing technology. In this system, the CRISPR/Cas9 plasmid was delivered into melanoma B16F10 cells using a nucleobase-modified polyamidoamine (PAMAM) derivative namely AP-PAMAM, which was constructed through the modification with 2-amino-6-chloropurine. Meanwhile, the carrier could efficiently facilitate the endosomal escape of CRISPR/Cas9 plasmid and thereby inhibit PD-L1 expression in cancer cells. Moreover, the intravenous injection of AP-PAMAM/plasmid nanoparticles could recruit and activate CD8+ T cells at the tumor site, promoting the secretion of cytokines and the killing of tumor cells. Overall, this nano-delivery system for genome editing provided a promising strategy to block the PD-1/PD-L1 pathway and obtain effective tumor immunotherapy.


Subject(s)
Gene Editing , Neoplasms , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Immunotherapy , Neoplasms/genetics , Neoplasms/therapy , Polyamines , Programmed Cell Death 1 Receptor , RNA, Small Interfering/pharmacology
6.
Colloids Surf B Biointerfaces ; 206: 111937, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34198232

ABSTRACT

Non-small cell lung cancer (NSCLC) has emerged to be a significant cause of cancer mortality worldwide. Artesunate (ART) extracted from Chinese herb Artemisia annua L, has been proven to possess desirable anti-cancer efficacy, especially for the metastatic NSCLC treatment. Moreover, the poly(lactic-co-glycolic acid) (PLGA) microsphere has been considered to be a potential pulmonary delivery system for the sustained drug release to enhance the therapeutic efficacy of lung cancer. Herein, the ART-loaded porous PLGA microsphere was prepared through the emulsion solvent evaporation approach. The microsphere was demonstrated to possess highly porous structure and ideal aerodynamic diameter for the pulmonary administration. Meanwhile, sustained ART release was obtained from the porous microsphere within 8 days. The release solution collected from the microsphere could be effectively uptake by the cells and further induce the cell apoptosis and the cell cycle arrest at G2/M phase to execute the anti-proliferative effect, using human lung adenocarcinoma cell line A549 as a model. Additionally, strong inhibitory effect on the cell migration and invasion could be obtained after the treatment with release solution. Taken together, our results demonstrated that the ART-loaded PLGA porous microsphere could achieve excellent anti-cancer efficacy, providing a potential approach for the NSCLC treatment via the pulmonary administration.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Artesunate , Carcinoma, Non-Small-Cell Lung/drug therapy , Humans , Lactic Acid , Lung Neoplasms/drug therapy , Microspheres , Particle Size , Polyglycolic Acid , Polylactic Acid-Polyglycolic Acid Copolymer , Porosity
7.
Macromol Biosci ; 21(5): e2100024, 2021 05.
Article in English | MEDLINE | ID: mdl-33713529

ABSTRACT

Emerging evidence suggests that microRNAs (miRNAs) play key roles in the regulation of multiple biological processes, including the differentiation of osteoblasts. Although miRNA-based gene therapy holds immense potential in the treatment of a variety of diseases, the intracellular delivery of miRNA remains challenging owing to the lack of efficient and safe gene carriers. In this study, a fluoropolymer (FP) is constructed through the modification of polyamidoamine (PAMAM) using heptafluorobutyric anhydride and then is used as a carrier for miR-23b transfection to induce osteocyte differentiation of osteoblasts. The derivative FP is found to facilitate miR-23b transfection due to its favorable endosomal escape from the "proton sponge" effect. Compared to PAMAM/miR-23b, the FP/miR-23b nanocomplex efficiently promotes the differentiation of osteoblasts and formation of calcified nodules, attributable to enhanced expression of various osteogenesis genes (runt-related transfection factor 2 [RUNX2], alkaline phosphatase [ALP], osteopontin [OPN], and osteocalcin [OCN]). Thus, FP-mediated miR-23b transfection may be used as an effective strategy to facilitate osteogenic differentiation.


Subject(s)
Cell Differentiation , Fluorine/chemistry , Osteoblasts/cytology , Osteocytes/cytology , Polymers/chemistry , Animals , Cell Line , Dendrimers/chemistry , Female , Fluorocarbons/chemistry , Humans , MicroRNAs/genetics , Osteogenesis/genetics , Rats , Rats, Wistar , Transfection
8.
Infect Immun ; 86(1)2018 01.
Article in English | MEDLINE | ID: mdl-29061705

ABSTRACT

Postfermented Pu-erh tea (PE) protects against metabolic syndrome (MS), but little is known regarding its underlying mechanisms. Animal experiments were performed to determine whether the gut microbiota mediated the improvement in diet-induced MS by PE and its main active components (PEAC). We confirmed that PE altered the body composition and energy efficiency, attenuated metabolic endotoxemia and systemic and multiple-tissue inflammation, and improved the glucose and lipid metabolism disorder in high-fat diet (HFD)-fed mice via multiple pathways. Notably, PE promoted the lipid oxidation and browning of white adipose tissue (WAT) in HFD-fed mice. Polyphenols and caffeine (CAF) played critical roles in improving these parameters. Meanwhile, PE remodeled the disrupted intestinal homeostasis that was induced by the HFD. Many metabolic changes observed in the mice were significantly correlated with alterations in specific gut bacteria. Akkermansia muciniphila and Faecalibacterium prausnitzii were speculated to be the key gut bacterial links between the PEAC treatment and MS at the genus and species levels. Interestingly, A. muciniphila administration altered body composition and energy efficiency, promoted the browning of WAT, and improved the lipid and glucose metabolism disorder in the HFD-fed mice, whereas F. prausnitzii administration reduced the HFD-induced liver and intestinal inflammatory responses. In summary, polyphenol- and CAF-rich PE improved diet-induced MS, and this effect was associated with a remodeling of the gut microbiota.


Subject(s)
Caffeine/pharmacology , Gastrointestinal Microbiome/drug effects , Homeostasis/drug effects , Intestines/drug effects , Metabolic Syndrome/drug therapy , Polyphenols/pharmacology , Tea/chemistry , Animals , Cell Line , Cell Line, Tumor , Diet, High-Fat/adverse effects , Endotoxemia/drug therapy , Endotoxemia/microbiology , HEK293 Cells , HeLa Cells , Humans , Inflammation/drug therapy , Inflammation/microbiology , Intestines/microbiology , Lipid Metabolism/drug effects , Liver/drug effects , Male , Mice , Mice, Inbred C57BL , Microbiota/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...