Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
2.
ACS Med Chem Lett ; 11(4): 445-450, 2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32292548

ABSTRACT

64Cu-labeled new pan-somatostatin receptors (pan-SSTRs) probe PA1 was synthesized, characterized, and evaluated by in vitro and in vivo experiments. [64Cu]NOTA-PA1 was obtained with high specific activity, high radiochemical purity, and good stability. Cell uptake of [64Cu]NOTA-PA1 was higher than that of [64Cu]DOTA-TATE in MCF-7, A549, BGC823, and HT-29 cell lines. [64Cu]NOTA-PA1 showed high binding affinity for SSTRs expressed in A549 cells. The in vivo biodistribution and micropositron emission tomography (micro-PET) imaging studies of [64Cu]NOTA-PA1 revealed good detection ability in MCF-7 and A549 xenografted nude mice. The radiosynthesis, quality control, and preliminary biological evaluation of [64Cu]NOTA-PA1 have broaden the application of radiolabeled octreotide for SSTRs imaging, which could act as a potential multisubtypes targeted radiotracer for imaging SSTRs-positive tumors.

3.
ACS Omega ; 5(15): 8474-8482, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32337408

ABSTRACT

Purpose: Among the treatment options for pancreatic ductal adenocarcinoma (PDAC) are antibodies against the programmed cell death receptor 1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway. Positron emission tomography (PET) has been successfully used to assess PD-1/PD-L1 signaling in subcutaneous tumor models, but orthotopic tumor models are increasingly being recognized as a better option to accurately recapitulate human disease. However, when PET radiotracers have high uptake in the liver and spleen, it can obscure signals from the adjacent pancreas, making visualization of the response in orthotopic pancreatic tumors technically challenging. In this study, we first investigated the impact of radioisotope chelators on the biodistribution of 64Cu-labeled anti-PD-1 and anti-PD-L1 antibodies and compared the distribution profiles of anti-PD-1 and anti-PD-L1 antibodies. We then tested the hypothesis that co-injection of unlabeled antibodies reduces uptake of 64Cu-labeled anti-PD-L1 antibodies in the spleen and thereby permits accurate delineation of orthotopic pancreatic tumors in mice. Procedures: We established subcutaneous and orthotopic mouse models of PDAC using KRAS* murine pancreatic cancer cells with a doxycycline-inducible mutation of KRASG12D. We then (1) compared the biodistribution of 64Cu-labeled anti-PD-1 with 2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid (p-SCN-Bn-DOTA) and 2-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA) used as the chelators in the orthotopic model; (2) compared the biodistribution of [64Cu]Cu-NOTA-anti-PD-1 and [64Cu]Cu-NOTA-anti-PD-L1 in the orthotopic model; and (3) imaged subcutaneous and orthotopic KRAS* tumors with [64Cu]Cu-NOTA-anti-PD-L1 with and without co-injection of unlabeled anti-PD-L1 as the blocking agent. Results: [64Cu]Cu-NOTA-anti-PD-L1 was a promising imaging probe. By co-injection of an excess of unlabeled anti-PD-L1, background signals of [64Cu]Cu-NOTA-anti-PD-L1 from the spleen were significantly reduced, leading to a clear delineation of orthotopic pancreatic tumors. Conclusions: Co-injection with unlabeled anti-PD-L1 is a useful method for PET imaging of PD-L1 expression in orthotopic pancreatic cancer models.

4.
Sci Rep ; 10(1): 520, 2020 01 16.
Article in English | MEDLINE | ID: mdl-31949258

ABSTRACT

The tyrosine kinase receptor EphB4 is frequently overexpressed in ovarian and other solid tumors and is involved in interactions between tumor cells and the tumor microenvironment, contributing to metastasis. Trans-interaction between EphB4 and its membrane-bound ligand ephrin B2 (EFNB2) mediates bi-directional signaling: forward EFNB2-to-EphB4 signaling suppresses tumor cell proliferation, while reverse EphB4-to-EFNB2 signaling stimulates the invasive and angiogenic properties of endothelial cells. Currently, no small molecule-based, dual-function, EphB4-binding peptides are available. Here, we report our discovery of a bi-directional ephrin agonist peptide, BIDEN-AP which, when selectively internalized via receptor-mediated endocytosis, suppressed invasion and epithelial-mesenchymal transition of ovarian cancer cells. BIDEN-AP also inhibited endothelial migration and tube formation. In vivo, BIDEN-AP and its nanoconjugate CCPM-BIDEN-AP significantly reduced growth of orthotopic ovarian tumors, with CCPM-BIDEN-AP displaying greater antitumor potency than BIDEN-AP. Both BIDEN-AP and CCPM-BIDEN-AP compromised angiogenesis by downregulating epithelial-mesenchymal transition and angiogenic pathways. Thus, we report a novel EphB4-based therapeutic approach against ovarian cancer.


Subject(s)
Ephrin-B2/metabolism , Ephrins/agonists , Ovarian Neoplasms/drug therapy , Peptides/administration & dosage , Peptides/pharmacology , Receptor, EphB4/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Epithelial-Mesenchymal Transition/drug effects , Female , Humans , Mice , Micelles , Ovarian Neoplasms/metabolism , Peptides/genetics , Phosphorylation , Protein Binding/drug effects , Signal Transduction/drug effects , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays
5.
Bioconjug Chem ; 30(10): 2675-2683, 2019 10 16.
Article in English | MEDLINE | ID: mdl-31560538

ABSTRACT

Exosomes have attracted tremendous attention due to their important role in physiology, pathology, and oncology, as well as promising potential in biomedical applications. Although great efforts have been dedicated to investigating their biological properties and applications as natural cancer drug-delivery systems, the systemic biodistribution of exosomes remains underexplored. In addition, exosome-based drug delivery is inevitably hindered by the robust liver clearance, leading to suboptimal tumor retention and therapeutic efficiency. In this study, we report one of the first examples using in vivo positron emission tomography (PET) for noninvasive monitoring of copper-64 (64Cu)-radiolabeled polyethylene glycol (PEG)-modified exosomes, achieving excellent imaging quality and quantitative measurement of blood residence and tumor retention. PEGylation not only endowed exosomes with a superior pharmacokinetic profile and great accumulation in the tumor versus traditionally reported native exosomes but also reduced premature hepatic sequestration and clearance of exosomes, findings that promise enhanced therapeutic delivery efficacy and safety in future studies. More importantly, this study provides important guidelines about surface engineering, radiochemistry, and molecular imaging in obtaining accurate and quantitative biodistribution information on exosomes, which may benefit future exploration in the realm of exosomes.


Subject(s)
Copper Radioisotopes/chemistry , Exosomes/metabolism , Polyethylene Glycols/chemistry , Polyethylene Glycols/metabolism , Positron-Emission Tomography/methods , Animals , Cell Line, Tumor , Mice , Polyethylene Glycols/pharmacokinetics , Tissue Distribution
6.
Mol Pharm ; 16(2): 808-815, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30608713

ABSTRACT

Metformin is the most widely prescribed drug for type 2 diabetes. Chemically, metformin is a hydrophilic base that functions as an organic cation, suggesting that it may have the capacity to inhibit the tubular reabsorption of peptide radiotracers. The purpose of this study was to investigate whether metformin could reduce renal uptake of peptidyl radiotracers and serve as a radioprotective agent for peptide receptor radionuclide therapy (PRRT). METHODS: We used two radiolabeled peptides: a 68Ga-labeled cyclic (TNYL-RAW) peptide (68Ga-NOTA-c(TNYL-RAW) (NOTA: 1,4,7 triazacyclononane-1,4,7-trisacetic acid) targeting EphB4 receptors and an 111In- or 64Cu-labeled octreotide (111In/64Cu-DOTA-octreotide) (DOTA: 1,4,7,10 triazacyclododecane-1,4,7,10-tetraacetic acid) targeting somatostatin receptors. Each radiotracer was injected intravenously into normal Swiss mice or tumor-bearing nude mice in the presence or absence of metformin administered intravenously or orally. Micropositron emission tomography or microsingle-photon emission computed tomography images were acquired at different times after radiotracer injection, and biodistribution studies were performed at the end of the imaging session. To assess the radioprotective effect of metformin on the kidneys, normal Swiss mice received two doses of 111In-DOTA-octreotidein the presence or absence of metformin, and renal function was analyzed via blood chemistry and histology. RESULTS: Intravenous injection of metformin with 68Ga-NOTA-c(TNYL-RAW) or 111In-DOTA-octreotide reduced the renal uptake of the radiotracer by 60% and 35%, respectively, compared to uptake without metformin. These reductions were accompanied by greater uptake in the tumors for both radiolabeled peptides. Moreover, the renal uptake of 111In-DOTA-octreotide was significantly reduced when metformin was administered via oral gavage. Significantly more radioactivity was recovered in the urine collected over a period of 24 h after intravenous injection of 64Cu-DOTA-octreotide in mice that received oral metformin than in mice that received vehicle. Finally, coadministration of 111In-DOTA-octreotide with metformin mitigated radio-nephrotoxicity. CONCLUSION: Metformin inhibits kidney uptake of peptidyl radiotracers, protecting the kidney from nephrotoxicity. Further studies are needed to elucidate the mechanisms of these finding and to optimize mitigation of radiation-induced damage to kidney in PRRT.


Subject(s)
Kidney/metabolism , Metformin/pharmacology , Animals , Biological Transport/drug effects , Cell Line, Tumor , Copper Radioisotopes/metabolism , Female , Humans , Injections, Intravenous , Kidney/drug effects , Metformin/administration & dosage , Mice , Mice, Nude , Octreotide/metabolism , Positron-Emission Tomography , Receptors, Peptide/metabolism , Tomography, Emission-Computed, Single-Photon
7.
Bioconjug Chem ; 29(12): 4062-4071, 2018 12 19.
Article in English | MEDLINE | ID: mdl-30404438

ABSTRACT

Copper sulfide (CuS) nanoparticles have been considered one of the most clinical relevant nanosystems because of their straightforward chemistry, small particle size, low toxicity, and intrinsic theranostic characteristics. In our previous studies, radioactive [64Cu]CuS nanoparticles were successfully developed to be used as efficient radiotracers for positron emission tomography and for photothermal ablation therapy of cancer cells using near-infrared laser irradiation. However, the major challenge of CuS nanoparticles as a theranostic platform is the lack of a means for effective targeted delivery to the tumor site. To overcome this challenge, we designed and synthesized angiogenesis-targeting [64Cu]CuS nanoparticles, which are coupled with cyclic RGDfK peptide [c(RGDfK)] through polyethylene glycol (PEG) linkers using click chemistry. In assessing their tumor-targeting efficacy, we found that the tumor uptakes of [64Cu]CuS-PEG-c(RGDfK) nanoparticles at 24 h after intravenous injection were significantly greater (8.6% ± 1.4% injected dose/gram of tissue) than those of nontargeted [64Cu]CuS-PEG nanoparticles (4.3% ± 1.2% injected dose/gram of tissue, p < 0.05). Irradiation of tumors in mice administered [64Cu]CuS-PEG-c(RGDfK) nanoparticles induced 98.7% necrotic areas. In contrast, irradiation of tumors in mice administered nontargeted CuS-PEG nanoparticles induced 59% necrotic areas ( p < 0.05). The angiogenesis-targeting [64Cu]CuS nanoparticles may serve as a promising platform for image-guided ablation therapy with high efficacy and minimal side effects in future clinical translation of this novel class of multifunctional nanomaterials.


Subject(s)
Copper Radioisotopes/chemistry , Copper/chemistry , Integrin alphaVbeta3/chemistry , Laser Therapy , Metal Nanoparticles/chemistry , Neoplasms, Experimental/therapy , Positron Emission Tomography Computed Tomography/methods , Animals , HEK293 Cells , Humans , Mice , Peptides, Cyclic/chemistry , Polyethylene Glycols/chemistry
8.
Cancer Nanotechnol ; 9(1): 6, 2018.
Article in English | MEDLINE | ID: mdl-30147806

ABSTRACT

BACKGROUND: Hollow gold nanoparticles (HGNPs) exposed to near-infrared (NIR) light yield photothermal effects that can trigger a variety of biological effects for potential biomedical applications. However, the mechanism of laser-triggered drug release has not been studied before. METHODS: A tripeptide Ac-Glu-Glu-Cys-NH2 (Ac-EEC) was directly linked to the surface of HGNPs. The EEC-HGNPs conjugate was then complexed with cisplatin Pt(II) to give Ac-EEC(Pt)-HGNPs. Folic acid was introduced to the gold surface of Ac-EEC-HGNPs through a thioctic acid-terminated polyethylene glycol linker (F-PEG-TA) followed by complexation with Pt(II) to give F-Ac-EEC(Pt)-HGNPs. Laser treatment was instituted with a 15-ns pulsed laser at a repetition rate of 10 Hz. The released Pt(II) was quantified by inductively coupled plasma mass spectroscopy, and the nature of the released Pt-containing species was characterized by liquid chromatography-mass spectroscopy. The cytotoxicity was studied using the MTT assay. RESULTS: Pt(II) was released from Ac-EEC(Pt)-HGNPs via two modes: (1) sustained release through an inverse ligand exchange reaction with chloride ions and (2) rapid release through cleavage of the Au-S bond between the tripeptide linker and Au surface upon NIR laser irradiation. The folate (F) conjugate of the nanoconstruct, F-Ac-EEC(Pt)-HGNPs, in combination with laser treatment showed a significantly greater effect on cell mortality against folate-overexpressing human epidermoid carcinoma KB cells than F-Ac-ECC(Pt)-HGNPs alone after 24 h of incubation. CONCLUSIONS: These results demonstrate that the photothermal property of HGNPs can be used for dual-modality photothermal therapy and NIR laser-triggered platinum-based chemotherapy.

9.
Mol Pharm ; 15(2): 619-628, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29278911

ABSTRACT

Most of the radiolabeled somatostatin analogues (SSAs) are specific for subtype somatostatin receptor 2 (SSTR2). Lack of ligands targeting other subtypes of SSTRs, especially SSTR1, SSTR3, and SSTR5, limited their applications in tumors of low SSTR2 expression, including lung tumor. In this study, we aimed to design and synthesize a positron emission tomography (PET) radiotracer targeting multi-subtypes of SSTRs for PET imaging. PA1 peptide and its conjugate with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator or fluorescein isothiocyanate (FITC) at the N-terminal of the lysine position were synthesized. 68Ga was chelated to DOTA-PA1 to obtain 68Ga-DOTA-PA1 radiotracer. The stability, lipophilicity, binding affinity, and binding specificity of 68Ga-DOTA-PA1 and FITC-PA1 were evaluated by various in vitro experiments. Micro-PET imaging of 68Ga-DOTA-PA1 was performed in nude mice bearing A549 lung adenocarcinoma, as compared with 68Ga-DOTA-(Tyr3)-octreotate (68Ga-DOTA-TATE). Histological analysis of SSTR expression in A549 tumor tissues and human tumor tissues was conducted using immunofluorescence staining and immunohistochemical assay. 68Ga-DOTA-PA1 had high radiochemical yield and radiochemical purity of over 95% and 99%, respectively. The radiotracer was stable in vitro in different buffers over a 2 h incubation period. Cell uptake of 68Ga-DOTA-PA1 was 1.31-, 1.33-, and 1.90-fold that of 68Ga-DOTA-TATE, which has high binding affinity only for SSTR2, after 2 h incubation in H520, PG, and A549 lung cancer cell lines, respectively. Micro-PET images of 68Ga-DOTA-PA1 showed that the PET imaging signal correlated with the total expression of SSTRs, instead of SSTR2 only, which was measured by Western blotting and immunofluorescence analysis in mice bearing A549 tumors. In summary, a novel PET radiotracer, 68Ga-DOTA-PA1, targeting multi-subtypes of SSTRs, was successfully synthesized and was confirmed to be useful for PET imaging. It may have potential as a noninvasive PET radiotracer for imaging SSTR-positive tumors.


Subject(s)
Drug Design , Lung Neoplasms/diagnostic imaging , Molecular Imaging/methods , Radiopharmaceuticals/administration & dosage , Receptors, Somatostatin/metabolism , Animals , Cell Line, Tumor , Female , Gallium Radioisotopes/administration & dosage , Gallium Radioisotopes/chemistry , Heterocyclic Compounds, 1-Ring/administration & dosage , Heterocyclic Compounds, 1-Ring/chemistry , Humans , Lung Neoplasms/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemistry , Somatostatin/administration & dosage , Somatostatin/analogs & derivatives , Somatostatin/chemistry , Xenograft Model Antitumor Assays
10.
Oncotarget ; 7(33): 53414-53429, 2016 Aug 16.
Article in English | MEDLINE | ID: mdl-27462785

ABSTRACT

Unique molecular properties of species D adenoviruses (Ads)-the most diverse yet underexplored group of Ads-have been used to develop improved gene vectors. The low seroprevalence in humans of adenovirus serotype 43 (Ad43), an otherwise unstudied species D Ad, identified this rare serotype as an attractive new human gene therapy vector platform. Thus, in this study we wished to assess biological properties of Ad43 essential to its vectorization. We found that (1) Ad43 virions do not bind blood coagulation factor X and cause low random transduction upon vascular delivery; (2) they clear host tissues more quickly than do traditionally used Ad5 vectors; (3) Ad43 uses CD46 as primary receptor; (4) Ad43 can use integrins as alternative primary receptors. As the first step toward vectorization of Ad43, we demonstrated that the primary receptor specificity of the Ad43 fiber can be altered to achieve infection via Her2, an established oncotarget. Whereas this modification required use of the Ad5 fiber shaft, the presence of this domain in chimeric virions did not make them susceptible for neutralization by anti-Ad5 antibodies.


Subject(s)
Adenoviridae/genetics , Genetic Therapy/methods , Genetic Vectors , Animals , Humans , Mice
11.
Radiology ; 281(2): 427-435, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27347765

ABSTRACT

Purpose To determine if combretastatin A-4 phosphate disodium (CA4P) can enhance the tumor uptake of doxorubicin (Dox)-loaded, polyethylene glycol (PEG)-coated hollow gold nanospheres (HAuNS) mixed with ethiodized oil for improved photothermal ablation (PTA)-chemoembolization therapy (CET) of hepatocellular carcinoma (HCC) in rats. Materials and Methods Animal experiments were approved by the institutional animal care and use committee and performed from February 2014 to April 2015. Male Sprague-Dawley rats (n = 45; age, 12 weeks) were inoculated with N1S1 HCC cells in the liver, and 8 days later, were randomly divided into two groups of 10 rats. Group 1 rats received intrahepatic arterial injection of PEG-HAuNS and ethiodized oil alone; group 2 received pretreatment with CA4P and injection of PEG-HAuNS and ethiodized oil 5 minutes later. The gold content of tumor and liver tissue at 1 hour or 24 hours after injection was quantified by using neutron activation analysis (n = 5 per time point). Five rats received pretreatment CA4P, PEG-copper 64-HAuNS, and ethiodized oil and underwent micro-positron emission tomography (PET)/computed tomography (CT). In a separate study, three groups of six rats with HCC were injected with saline solution (control group); CA4P, Dox-loaded PEG-coated HAuNS (Dox@PEG-HAuNS), and ethiodized oil (CET group); or CA4P, Dox@PEG-HAuNS, ethiodized oil, and near-infrared irradiation (PTA-CET group). Temperature was recorded during laser irradiation. Findings were verified at postmortem histopathologic and/or autoradiographic examination. Wilcoxon rank-sum test and Pearson correlation analyses were performed. Results PEG-HAuNS uptake in CA4P-pretreated HCC tumors was significantly higher than that in non-CA4P-pretreated tumors at both 1 hour (P < .03) and 24 hours (P < .01). Mean ± standard deviation of tumor-to-liver PEG-HAuNS uptake ratios at 1 hour and 24 hours, respectively, were 5.63 ± 3.09 and 1.68 ± 0.77 in the CA4P-treated group and 1.29 ± 2.40 and 0.14 ± 0.11 in the non-CA4P-treated group. Micro-PET/CT allowed clear delineation of tumors, enabling quantitative imaging analysis. Laser irradiation increased temperature to 60°C and 43°C in the tumor and adjacent liver, respectively. Mean HCC tumor volumes 10 days after therapy were 1.68 cm3 ± 1.01, 3.96 cm3 ± 1.75, and 6.13 cm3 ± 2.27 in the PTA-CET, CET, and control groups, respectively, with significant differences between the PTA-CET group and other groups (P < .05). Conclusion CA4P pretreatment caused a higher concentration of Dox@PEG-HAuNS to be trapped inside the tumor, thereby enhancing the efficacy of anti-HCC treatment with PTA-CET in rats. © RSNA, 2016 Online supplemental material is available for this article.


Subject(s)
Carcinoma, Hepatocellular/therapy , Chemoembolization, Therapeutic/methods , Doxorubicin/pharmacology , Drug Carriers/pharmacokinetics , Gold/pharmacokinetics , Liver Neoplasms/therapy , Animals , Carcinoma, Hepatocellular/diagnostic imaging , Cell Line, Tumor , Disease Models, Animal , Doxorubicin/administration & dosage , Drug Carriers/administration & dosage , Ethiodized Oil , Gold/administration & dosage , Hyperthermia, Induced , Liver Neoplasms/diagnostic imaging , Male , Nanospheres , Polyethylene Glycols , Positron Emission Tomography Computed Tomography , Random Allocation , Rats , Rats, Sprague-Dawley , Stilbenes/pharmacology
12.
Cancer Cell ; 28(5): 610-622, 2015 Nov 09.
Article in English | MEDLINE | ID: mdl-26481148

ABSTRACT

While recombinant human erythropoietin (rhEpo) has been widely used to treat anemia in cancer patients, concerns about its adverse effects on patient survival have emerged. A lack of correlation between expression of the canonical EpoR and rhEpo's effects on cancer cells prompted us to consider the existence of an alternative Epo receptor. Here, we identified EphB4 as an Epo receptor that triggers downstream signaling via STAT3 and promotes rhEpo-induced tumor growth and progression. In human ovarian and breast cancer samples, expression of EphB4 rather than the canonical EpoR correlated with decreased disease-specific survival in rhEpo-treated patients. These results identify EphB4 as a critical mediator of erythropoietin-induced tumor progression and further provide clinically significant dimension to the biology of erythropoietin.


Subject(s)
Breast Neoplasms/genetics , Erythropoietin/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Ovarian Neoplasms/genetics , Receptor, EphB4/genetics , Adult , Aged , Aged, 80 and over , Animals , Blotting, Western , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Disease Progression , Erythropoietin/genetics , Female , Humans , Kaplan-Meier Estimate , MCF-7 Cells , Mice, Inbred C57BL , Mice, Nude , Middle Aged , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Protein Binding/drug effects , Receptor, EphB4/metabolism , Receptors, Erythropoietin/genetics , Receptors, Erythropoietin/metabolism , Recombinant Proteins/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Young Adult
13.
ACS Nano ; 8(5): 4530-8, 2014 May 27.
Article in English | MEDLINE | ID: mdl-24754567

ABSTRACT

The purpose of this study was to compare the binding affinity and selective targeting of aptamer- and antibody-coated hollow gold nanospheres (HAuNS) targeted to epidermal growth factor receptors (EGFR). EGFR-targeting aptamers were conjugated to HAuNS (apt-HAuNS) by attaching a thiol-terminated single-stranded DNA to the HAuNS and then adding the complementary RNA targeted to EGFR. Apt-HAuNS was characterized in terms of size, surface charge, absorption, and number of aptamers per particle. The in vivo pharmacokinetics, in vivo biodistribution, and micro-SPECT/CT imaging of (111)In-labeled apt-HAuNS and anti-EGFR antibody (C225)-conjugated HAuNS were evaluated in nude mice bearing highly malignant human OSC-19 oral tumors. (111)In-labeled PEG-HAuNS was used as a control (n = 5/group). Apt-HAuNS did not have an altered absorbance profile or size (λmax = 800 nm; diameter = 55 nm) compared to C225-HAuNS or PEG-HAuNS. The surface charge became more negative upon conjugation of the aptamer (-51.4 vs -19.0 for PEG-HAuNS and -25.0 for C225-HAuNS). The number of aptamers/particle was ∼250. In vitro cell binding and in vivo biodistribution showed selective binding of the apt-HAuNS to EGFR. µSPECT/CT imaging confirmed that there was more tumor uptake of apt-HAuNS than C225-HAuNS. Aptamer is a promising ligand for image-guided delivery of nanoparticles for treatment of tumor cells overexpressing EGFR.


Subject(s)
Antibodies/chemistry , ErbB Receptors/chemistry , Gold/chemistry , Head and Neck Neoplasms/drug therapy , Metal Nanoparticles/chemistry , Nanospheres/chemistry , Animals , Area Under Curve , Carcinoma, Squamous Cell/metabolism , DNA, Single-Stranded/chemistry , Humans , Ligands , Male , Mice , Mice, Nude , Nanotechnology/methods , Neoplasm Transplantation , Polyethylene Glycols/chemistry , Protein Binding , Tomography, Emission-Computed, Single-Photon , Tomography, X-Ray Computed
14.
Mol Imaging Biol ; 16(1): 74-84, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23918654

ABSTRACT

PURPOSE: In glioblastoma, EphB4 receptors, a member of the largest family of receptor tyrosine kinases, are overexpressed in both tumor cells and angiogenic blood vessels. The purpose of this study was to examine whether the EphB4-binding peptide TNYL-RAW labeled with both (64)Cu and near-infrared fluorescence dye Cy5.5 could be used as a molecular imaging agent for dual-modality positron emission tomography/computed tomography [PET/CT] and optical imaging of human glioblastoma in orthotopic brain tumor models. MATERIALS AND METHODS: TNYL-RAW was conjugated to Cy5.5 and the radiometal chelator 1,4,7,10-tetraazadodecane-N,N',N″,N‴-tetraacetic acid. The conjugate was then labeled with (64)Cu for in vitro binding and in vivo dual µPET/CT and optical imaging studies in nude mice implanted with EphB4-expressing U251 and EphB4-negative U87 human glioblastoma cells. Tumors and brains were removed at the end of the imaging sessions for immunohistochemical staining and fluorescence microscopic examinations. RESULTS: µPET/CT and near-infrared optical imaging clearly showed specific uptake of the dual-labeled TNYL-RAW peptide in both U251 and U87 tumors in the brains of the nude mice after intravenous injection of the peptide. In U251 tumors, the Cy5.5-labeled peptide colocalized with both tumor blood vessels and tumor cells; in U87 tumors, the tracer colocalized only with tumor blood vessels, not with tumor cells. CONCLUSIONS: Dual-labeled EphB4-specific peptide could be used as a noninvasive molecular imaging agent for PET/CT and optical imaging of glioblastoma owing to its ability to bind to both EphB4-expressing angiogenic blood vessels and EphB4-expressing tumor cells.


Subject(s)
Brain Neoplasms/diagnostic imaging , Glioblastoma/diagnostic imaging , Infrared Rays , Positron-Emission Tomography , Receptor, EphB4/metabolism , Tomography, X-Ray Computed , Xenograft Model Antitumor Assays , Animals , Autoradiography , Brain Neoplasms/pathology , Carbocyanines/metabolism , Cell Line, Tumor , Fluorescence , Fluorescent Antibody Technique , Glioblastoma/pathology , Heterocyclic Compounds, 1-Ring , Humans , Kinetics , Luciferases/metabolism , Male , Mice , Mice, Nude , Peptides , Surface Plasmon Resonance , Tissue Distribution
15.
Mol Imaging Biol ; 15(5): 614-24, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23608932

ABSTRACT

PURPOSE: This study was designed to investigate the intratumoral uptake of hollow gold nanospheres (HAuNS) after hepatic intra-arterial (IA) and intravenous (IV) injection in a liver tumor model. MATERIALS AND METHODS: Fifteen VX2 tumor-bearing rabbits were randomized into five groups (n = 3 in each group) that received either IV (64)Cu-labeled PEG-HAuNS (IV-PEG-HAuNS), IA (64)Cu-labeled PEG-HAuNS (IA-PEG-HAuNS), IV cyclic peptide (RGD)-conjugated (64)Cu-labeled PEG-HAuNS (IV-RGD-PEG-HAuNS), IA RGD-conjugated (64)Cu-labeled PEG-HAuNS (IA-RGD-PEG-HAuNS), or IA (64)Cu-labeled PEG-HAuNS with lipiodol (IA-PEG-HAuNS-lipiodol). The animals underwent PET/CT 1 h after injection, and uptake expressed as percentage of injected dose per gram of tissue (%ID/g) was measured in tumor and major organs. The animals were euthanized 24 h after injection, and tissues were evaluated for radioactivity. RESULTS: At 1 h after injection, animals in the IA-PEG-HAuNS-lipiodol group showed significantly higher tumor uptake (P < 0.001) and higher ratios of tumor-to-normal liver uptake (P < 0.001) than those in all other groups. The biodistribution of radioactivity 24 h after injection showed that IA delivery of PEG-HAuNS with lipiodol resulted in the highest tumor uptake (0.33 %ID/g; P < 0.001) and tumor-to-normal liver ratio (P < 0.001) among all delivery methods. At 24 h, the IA-RGD-PEG-HAuNS group showed higher tumor uptake than the IA-PEG-HAuNS group (0.20 vs. 0.099 %ID/g; P < 0.001). CONCLUSION: Adding iodized oil to IA-PEG-HAuNS maximizes nanoparticle delivery to hepatic tumors and therefore may be useful in targeted chemotherapy and photoablative therapy. PET/CT can be used to noninvasively monitor the biodistribution of radiolabeled HAuNS after IV or IA injection.


Subject(s)
Gold/metabolism , Liver Neoplasms/diagnostic imaging , Nanospheres/metabolism , Positron-Emission Tomography , Tomography, X-Ray Computed , Animals , Disease Models, Animal , Gold/administration & dosage , Injections, Intra-Arterial , Injections, Intravenous , Liver Neoplasms/pathology , Oligopeptides/chemical synthesis , Oligopeptides/chemistry , Polyethylene Glycols/chemical synthesis , Polyethylene Glycols/chemistry , Rabbits , Tissue Distribution , Whole Body Imaging
16.
J Nucl Med ; 54(1): 104-10, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23283564

ABSTRACT

UNLABELLED: Previously, we reported a small-molecular-weight peptide, single amino acid chelae((99m)Tc)-conjugated phosphatidylserine-binding peptide (SAAC((99m)Tc)-PSBP-6), with high binding affinity to phosphatidylserine on the surface of apoptotic cells. The purpose of this study was to determine the effectiveness of SAAC((99m)Tc)-PSBP-6 in detecting apoptosis induced by chemotherapy. METHODS: B16/F10 melanoma and 38C13 lymphoma tumor models were used in this study. For each type of tumor model, mice were divided into a group treated for imaging (treated group [TG]) and a control group that was not treated (nontreated group [N-TG]). In the TG, mice bearing murine B16/F10 melanoma received a single dose of intravenous polymeric paclitaxel (equivalent dose, 80 mg/kg), and mice bearing 38C13 xenografts received intraperitoneal cyclophosphamide (100 mg/kg). Mice in the N-TG were given the same volume of saline. γ-imaging 4 h after intravenous injection of SAAC((99m)Tc)-PSBP-6 and small-animal PET 1 h after intravenous injection of (18)F-FDG were performed before chemotherapy and at 1 d after chemotherapy. On day 1, immediately after the apoptosis imaging sessions, 3 mice each in the TGs and N-TGs were killed, and tumor tissues were excised for hematoxylin and eosin histology, autoradiography, and immunohistochemical staining using anti-active caspase 3 and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL). The tumor volumes in the remaining mice (n = 5/group) were measured every other day for 7 d. RESULTS: In both tumor models, the uptake of SAAC((99m)Tc)-PSBP-6 increased significantly on day 1 after treatment, whereas (18)F-FDG uptake decreased significantly during the same time. The mean tumor uptake values for SAAC((99m)Tc)-PSBP-6 increased 142.4% ± 36.9% and 112% ± 42.9% in 38C13 and B16/F10 tumors, respectively (both P < 0.05, pretreatment vs. day 1 after treatment). The mean tumor uptake value for (18)F-FDG decreased 67.36% ± 17.52% and 62.82% ± 4.53% in 38C13 and B16/F10 tumors, respectively. The uptake of SAAC((99m)Tc)-PSBP-6 negatively correlated with (18)F-FDG (r = -0.79, P < 0.05). Treated tumors had smaller volumes than untreated controls, treated tumors had significantly higher numbers of apoptotic cells, and tumor uptake of SAAC((99m)Tc)-PSBP-6 correlated with the number of TUNEL-positive cells. CONCLUSION: SAAC((99m)Tc)-PSBP-6 γ-imaging is useful for the early assessment of treatment-induced apoptosis and, thus, may be used as a substitute for (18)F-FDG PET for assessing early treatment response.


Subject(s)
Apoptosis/drug effects , Fluorodeoxyglucose F18 , Lymphoma/diagnostic imaging , Melanoma, Experimental/diagnostic imaging , Oligopeptides , Organotechnetium Compounds , Peptides , Positron-Emission Tomography/methods , Animals , Biological Transport , Cell Line, Tumor , Female , Fluorodeoxyglucose F18/metabolism , Lymphoma/drug therapy , Lymphoma/metabolism , Lymphoma/pathology , Melanoma, Experimental/drug therapy , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Mice , Oligopeptides/metabolism , Organotechnetium Compounds/metabolism , Peptides/metabolism , Time Factors , Treatment Outcome , Tumor Burden/drug effects
17.
Am J Nucl Med Mol Imaging ; 2(4): 499-507, 2012.
Article in English | MEDLINE | ID: mdl-23145365

ABSTRACT

The purposes of this study were to develop an efficient method of labeling D-glucosamine hydrochloride with gallium 68 ((68)Ga) and investigate the imaging properties of the resulting radiotracer in a human tumor xenograft model using micro-positron emission tomography (µPET). The precursor compound 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-2-deoxy-D-glucosamine (DOTA-DG) was synthesized from D-glucosamine hydrochloride and 2-(4-isothiocyanatobenzyl)-DOTA. Radiolabeling of DOTA-DG with (68)Ga was achieved in 10 minutes using microwave heating. The labeling efficiency a nd radiochemical purity after purification of (68)Ga-DOTA-DG were ~85% and greater than 98%, respectively. In A431 cells, the percentages of (68)Ga-DOTA-DG and (18)F-FDG uptakes after 60 min incubation were 15.7% and 16.2%, respectively. In vivo, the mean ± standard deviation of (68)Ga-DOTADG uptake values in A431 tumors were 2.38±0.30, 0.75±0.13, and 0.39±0.04 percent of the injected dose per gram of tissue at 10, 30, and 60 minutes after intravenous injection, respectively. µPET imaging of A431-bearing mice clearly delineated tumors at 60 minutes after injection of (68)Ga-DOTA-DG at a dose of 3.7 MBq. (68)Ga-DOTA-DG displayed significantly higher tumor-to-heart, tumor-to-brain, and tumor-to-muscle ratios than (18)F-FDG did. Further studies are needed to identify the mechanism of tumor uptake of this new glucosamine-based PET imaging tracer.

18.
Cancer Res ; 72(18): 4777-86, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22865457

ABSTRACT

Photothermal ablation (PTA) is an emerging technique that uses near-infrared (NIR) laser light-generated heat to destroy tumor cells. However, complete tumor eradication by PTA therapy alone is difficult because heterogeneous heat distribution can lead to sublethal thermal dose in some areas of the tumor. Successful PTA therapy requires selective delivery of photothermal conducting nanoparticles to mediate effective PTA of tumor cells, and the ability to combine PTA with other therapy modalities. Here, we synthesized multifunctional doxorubicin (DOX)-loaded hollow gold nanospheres (DOX@HAuNS) that target EphB4, a member of the Eph family of receptor tyrosine kinases overexpressed on the cell membrane of multiple tumors and angiogenic blood vessels. Increased uptake of targeted nanoparticles T-DOX@HAuNS was observed in three EphB4-positive tumors both in vitro and in vivo. In vivo release of DOX from DOX@HAuNS, triggered by NIR laser, was confirmed by dual-radiotracer technique. Treatment with T-DOX@HAuNS followed by NIR laser irradiation resulted in significantly decreased tumor growth when compared with treatments with nontargeted DOX@HAuNS plus laser or HAuNS plus laser. The tumors in 6 of the 8 mice treated with T-DOX@HAuNS plus laser regressed completely with only residual scar tissue by 22 days following injection, and none of the treatment groups experienced a loss in body weight. Together, our findings show that concerted chemo-photothermal therapy with a single nanodevice capable of mediating simultaneous PTA and local drug release may have promise as a new anticancer therapy.


Subject(s)
Antineoplastic Agents/administration & dosage , Doxorubicin/administration & dosage , Low-Level Light Therapy/methods , Nanospheres , Neoplasms, Experimental/drug therapy , Receptor, EphB4/metabolism , Animals , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacokinetics , Doxorubicin/adverse effects , Doxorubicin/pharmacokinetics , Drug Carriers/administration & dosage , Drug Carriers/adverse effects , Drug Carriers/pharmacokinetics , Female , Gold , Infrared Rays , Mice , Nanospheres/chemistry , Nanospheres/therapeutic use , Neoplasms, Experimental/metabolism , Tomography, Emission-Computed, Single-Photon
19.
J Control Release ; 161(3): 959-66, 2012 Aug 10.
Article in English | MEDLINE | ID: mdl-22617522

ABSTRACT

Targeted nanoparticle-based delivery systems have been used extensively to develop effective cancer theranostics. However, how targeting ligands affect extravascular transport of nanoparticles in solid tumors remains unclear. Here, we show, using B16/F10 melanoma cells expressing melanocortin type-1 receptor (MC1R), that the nature of targeting ligands, i.e., whether they are agonists or antagonists, directs tumor uptake and intratumoral distribution after extravasation of nanoparticles from tumor vessels into the extravascular fluid space. Pegylated hollow gold nanospheres (HAuNS, diameter=40 nm) coated with MC1R agonist are internalized upon ligand-receptor binding, whereas MC1R antagonist-conjugated HAuNS remain attached on the cell surface. Transcellular transport of agonist-conjugated HAuNS was confirmed by a multilayer tumor cell model and by transmission electron microscopy. MC1R agonist- but not MC1R antagonist-conjugated nanoparticles exhibit significantly higher tumor uptake than nontargeted HAuNS and are quickly dispersed from tumor vessels via receptor-mediated endocytosis and subsequent transcytosis. These results confirm an active transport mechanism that can be used to overcome one of the major biological barriers for efficient nanoparticle delivery to solid tumors.


Subject(s)
Gold/administration & dosage , Melanoma, Experimental/metabolism , Nanospheres/administration & dosage , Receptor, Melanocortin, Type 1/metabolism , Transcytosis/physiology , Animals , Biomarkers, Tumor/agonists , Biomarkers, Tumor/antagonists & inhibitors , Biomarkers, Tumor/metabolism , Female , Gold/chemistry , HEK293 Cells , Humans , Mice , Mice, Nude , Nanospheres/chemistry , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/chemistry , Receptor, Melanocortin, Type 1/agonists , Receptor, Melanocortin, Type 1/antagonists & inhibitors
20.
Mol Cancer Ther ; 11(1): 143-53, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22090420

ABSTRACT

Recombinant immunotoxins, consisting of single-chain variable fragments (scFv) genetically fused to polypeptide toxins, represent potentially effective candidates for cancer therapeutics. We evaluated the affinity of various anti-Her2/neu scFv fused to recombinant gelonin (rGel) and its effect on antitumor efficacy and off-target toxicity. A series of rGel-based immunotoxins were created from the human anti-Her2/neu scFv C6.5 and various affinity mutants (designated ML3-9, MH3-B1, and B1D3) with affinities ranging from 10(-8) to 10(-11) mol/L. Against Her2/neu-overexpressing tumor cells, immunotoxins with increasing affinity displayed improved internalization and enhanced autophagic cytotoxicity. Targeting indices were highest for the highest affinity B1D3/rGel construct. However, the addition of free Her2/neu extracellular domain (ECD) significantly reduced the cytotoxicity of B1D3/rGel because of immune complex formation. In contrast, ECD addition had little impact on the lower affinity constructs in vitro. In vivo studies against established BT474 M1 xenografts showed growth suppression by all immunotoxins. Surprisingly, therapy with the B1D3-rGel induced significant liver toxicity because of immune complex formation with shed Her2/neu antigen in circulation. The MH3-B1/rGel construct with intermediate affinity showed effective tumor growth inhibition without inducing hepatotoxicity or complex formation. These findings show that while high-affinity constructs can be potent antitumor agents, they may also be associated with mistargeting through the facile formation of complexes with soluble antigen leading to significant off-target toxicity. Constructs composed of intermediate-affinity antibodies are also potent agents that are more resistant to immune complex formation. Therefore, affinity is an exceptionally important consideration when evaluating the design and efficacy of targeted therapeutics.


Subject(s)
Immunotoxins/pharmacology , Receptor, ErbB-2/immunology , Ribosome Inactivating Proteins, Type 1/pharmacology , Single-Chain Antibodies/pharmacology , Animals , Antibody Affinity , Antineoplastic Agents/immunology , Antineoplastic Agents/pharmacology , Humans , Immunotoxins/chemistry , Immunotoxins/immunology , Mice , Mice, Nude , Neoplasms/immunology , Ribosome Inactivating Proteins, Type 1/immunology , Single-Chain Antibodies/immunology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...