Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 325(Pt B): 116466, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36327605

ABSTRACT

For the efficient removal of the bio-refractory organic pollutants in the electronic industry wastewater, the Ni-Fe (oxides) modified three-dimension (3D) particle electrode was applied in electro-Fenton system (3D/EF), where iron ions were released from anode and deposited onto algal biochar (ABC) to prepare composite catalyst during reaction process. Firstly, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) analysis were applied to confirm successful fabrication of the 3D particle electrode materials. Secondly, COD removal efficiency could reach about 80%, which was about 20% higher than that in 2D/EF system, under the optimized conditions as 2.0 g/L of Ni-ABC particle electrodes, initial pH of 3, 100 mL/min of aeration intensity and 20 mA/cm2 of applied current density. Thirdly, characterized using three-dimensional fluorescence spectroscopy and GC-MS analysis, it seemed that most of the macromolecular substances could be degraded, whereas mono-2-ethylhexyl phthalate (MEHP) was identified as the most abundant and representative compound. Finally, possible degradation pathway of MEHP in 3D/EF system was proposed including dealkylation, cleavage of C-O bond, and demethylation. Therefore, this study provides a new strategy in designing EF system employing bimetal doped biochar composite for an efficient elimination of organic pollutants within electronic industry wastewater.


Subject(s)
Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Hydrogen Peroxide/chemistry , Electrodes , Electronics , Oxidation-Reduction
2.
Polymers (Basel) ; 15(23)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38231918

ABSTRACT

The release of algal toxins in algae-containing water sources poses a serious threat to drinking water safety and human health. The conventional water treatment processes of water plants have a limited ability to remove algae and algal toxins, especially algal toxins with a molecular weight (MW) of less than 1000 Da. To eliminate algal pollution from a water source, a two-stage ultrafiltration (UF) process with a large polysulfone hollow fiber membrane with a MW cut-off of 200 kDa and a small aromatic polyamide roll membrane with a MW cut-off of 1 kDa were applied after a traditional sand filter in a water treatment plant. UF operation conditions, including the operating time, pressure, and membrane flux, were investigated. With an operating pressure of 0.05-0.08 MPa, the polysulfone hollow fiber membrane removed algae effectively, as the influent algal cell concentration ranged from 1-30 cells/mL but exhibited a limited removal of algal toxins. With an operating pressure of 0.3-0.4 MPa, the elimination of microcystins (MCs) reached 96.3% with the aromatic polyamide roll membrane. The operating pressure, membrane flux, and operating time were selected as the experimental factors, and the effects on the UF efficiency to remove algal toxins and biodegradable dissolved organic carbon were investigated by the response surface methodology. The model showed that the order of influence on the membrane operating efficiency was operating pressure > membrane flux > running time. The optimal UF operating conditions were an operating pressure of 0.3 MPa, a membrane flux of 17.5 L/(m2·h), and a running time of 80 min.

3.
Polymers (Basel) ; 14(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36365681

ABSTRACT

The biodegradable dissolved organic carbon (BDOC) in micro-polluted water sources affects the drinking water quality and safety in the urban water supply. The conventional technology of "coagulation-sedimentation-filtration" in a water plant located in the lower reaches of the Yangtze River removed dissolved organic carbon (DOC) with a molecular weight (MW) > 30 kDa effectively, but the BDOC elimination only ranged 27.4−58.1%, due to their predominant smaller MW (<1 kDa), leading to a high residual BDOC of 0.22−0.33 mg/L. To ensure the biological stability of drinking water, i.e., the inability to support microbial growth (BDOC < 0.2 mg/L), a pilot-scale ultrafiltration process (UF, made of aromatic polyamide with MW cut-off of 1 kDa) was operated to remove BDOC as an advanced treatment after sand-filtration. Results showed the membrane flux decreased with the increase in the influent BDOC concentration and decrease in operating pressure. With an operating pressure of 0.25 MPa, the BDOC removal by UF reached 80.7%, leading to a biologically stable BDOC concentration of 0.08 mg/L. The fouling of the membrane was mainly caused by organic pollution. The H2O2−HCl immersion washing method effectively cleaned the membrane surface fouling, with a recovery of membrane flux of 98%.

4.
Sci Total Environ ; 830: 154713, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35337873

ABSTRACT

This study evaluated the evolution of low molecular weight organic compounds in ultrapure water (UPW) production using a pilot-scale UPW production system and an ultrafiltration-reverse osmosis (UF-RO) system. During UPW production, a dissolved organic carbon (DOC) removal efficiency of 99.4% was achieved with a feedwater DOC level of 1.42 mg/L. The pretreatment, make-up, and polishing stages accounted for 85.3%, 13.7%, and 0.4% of DOC removal, respectively. Urea, trichloromethane, and dibromochloromethane persisted throughout UPW production process, contributing 24.7%, 9.2%, and 22.6%, respectively, to the final effluent DOC level of 8.1 µg/L. The pretreatment and make-up stages of the UPW production process could remove N-nitrosodimethylamine, chloral hydrate, dichloroacetonitrile, and tribromomethane. The UF-RO system could remove approximately 90% of DOC. However, the proportion of halogenated disinfection by-products (DBPs) in the DOC increased by 1.4-4.5 times in the RO effluents. RO could completely reject haloacetaldehydes. However, RO could not completely remove trichloromethane, tribromomethane, bromodichloromethane, and dibromoacetonitrile, which remained the main halogenated DBPs in the RO effluents.


Subject(s)
Water Pollutants, Chemical , Water Purification , Chloroform , Molecular Weight , Organic Chemicals , Osmosis , Ultrafiltration , Water , Water Pollutants, Chemical/analysis
5.
Bioresour Technol ; 282: 156-162, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30856423

ABSTRACT

In this study, a mathematical model was developed to have a better understanding of the process and be used in future reactor scale models to predict its process performance. This model utilizes the Activated Sludge Model NO.1 (ASM1) framework and incorporates bioprocesses of formation and degradation of soluble microbial products (SMP) and extracellular polymeric substances (EPS). Simulation result shows the model could very well predict the bioreactor performance. The average error of COD, BOD and NH3-N removal efficiency was 0.48, 0.28 and 1.18%, respectively.


Subject(s)
Bioreactors , Biofouling , Sewage
SELECTION OF CITATIONS
SEARCH DETAIL
...