Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 325(Pt B): 116557, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36308952

ABSTRACT

The impact of climate change on nearshore coastal water quality and its interaction with pollution prevention efforts (e.g., the development of green and gray water infrastructure) still lack systematic investigation. This study performed a holistic analysis of the impact of climate change on the salinity and concentrations of total nitrogen (TN), total phosphorus (TP) and chlorophyll a (Chl.a) in Shenzhen Bay between Shenzhen and Hong Kong, the two most developed megacities in South China, based on three-dimensional hydrodynamic and water quality modeling. The major study findings were as follows. First, Chl.a was the most sensitive parameter, and its bay-wide average concentration in 2100 was predicted to be approximately 13% and 46% higher than those in 2015 under mild and rapid climate change scenarios, respectively. Second, sea level rise was found to be a major driver of all four water quality parameters, while temperature and radiation mainly influenced Chl.a and precipitation mainly influenced nutrients. Third, water quality responses to climate change were highly heterogeneous over the bay. Even under a mild climate change scenario, the highest location-specific changes (2100 vs. 2015) in salinity and TN, TP and Chl.a concentrations were projected to be approximately 21%, 19%, 25%, and 65%, respectively. Fourth, changes in seasonal variation due to climate change may lead to an enhanced ecological risk of algal blooms. Finally, the effect of reducing TN and TP concentrations by proposed water infrastructure development was found to be significantly weakened (nearly 40% and 20% for TN and TP, respectively, under a mild climate change scenario), while the negative effect (i.e., increase in the Chl.a concentration) was notably accelerated. Regional cooperation is critical for protecting the water quality of the bay, particularly under climate change. The insights obtained in this study are applicable to other coastal water zones around the world with similar socioeconomic backgrounds and climatic conditions.


Subject(s)
Climate Change , Water Quality , Chlorophyll A/analysis , Rivers/chemistry , Environmental Monitoring/methods , Chlorophyll , Eutrophication , Phosphorus/analysis , Nitrogen/analysis , China
2.
J Hazard Mater ; 411: 125047, 2021 06 05.
Article in English | MEDLINE | ID: mdl-33453662

ABSTRACT

Parabens are preservatives widely used in pharmaceutical and personal care products (PPCPs). This study investigated urban water pollution by parabens from a watershed perspective. Water and sediment samples were collected from one of the most polluted urban streams in China. Six parabens and five paraben metabolites were frequently detected in the samples, whereas the overall pollution level was intermediate according to a global comparison. The spatial distributions of the chemical concentrations along the river are influenced by multiple factors, and WWTPs appear to be a major factor. In general, the target pollutants were detected at higher concentrations in the dry season than in the wet season, but extraordinary concentration peaks in water were observed downstream of wastewater treatment plants (WWTPs), indicating a dominant contribution from combined sewage overflows (CSOs) during rainfall events. In a representative WWTP-influenced reach, CSOs account for its 97.3% of ∑parabens input and 96.9% of ∑metabolites input in a typical rainfall event. Converting the existing combined sewer systems to separate stormwater drainage systems could reduce the inputs of ∑parabens and ∑metabolites by 86.9-84.5%, respectively. This study highlights the role of urban drainage systems in preventing surface water pollution by PPCPs. CAPSULE: Urban drainage systems play a critical role in controlling pollution by parabens and their metabolites in urban surface water.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , China , Rivers , Sewage/analysis , Wastewater , Water , Water Pollutants, Chemical/analysis
3.
Ecotoxicol Environ Saf ; 180: 43-52, 2019 Sep 30.
Article in English | MEDLINE | ID: mdl-31063942

ABSTRACT

Bisphenol analogues and alkyl esters of p-hydroxybenzoic (parabens) can be defined as emerging endocrine-disrupting compounds (EDCs) due to their similar characteristics. This study analyzed eight bisphenol analogues, six parabens, and five paraben metabolites in seawater (including aqueous and suspended particle matter (SPM)), as well as organism samples from the Pearl River Estuary, in order to determine their occurrence, distribution, bioaccumulation, and ecological and human health risk in South China's marine environment. The aggregation concentrations of bisphenol analogues, parabens, and paraben metabolites were 106 ng/L, 4.53 ng/L, and 231 ng/L in aqueous samples, 868 ng/g, 173 ng/g, and 9320 ng/g in SPM samples, 41.6 ng/g, 6.46 ng/g, and 460 ng/g in marine organisms, respectively. This study identified significantly higher concentrations of paraben metabolites than their parent parabens in the marine environment, which has not yet been reported in previous studies. These findings call for greater attention on the contamination of paraben metabolites in marine environments. Moreover, the median values of the logarithm of bioaccumulation factors (BAF) for the detected 20 target compounds ranged from 0.11 to 5.07. Bisphenol analogues including bisphenol A (BPA), bisphenol S (BPS), bisphenol F (BPF), bisphenol B (BPB), bisphenol P (BPP), and Fluornen-9-bisphenol (BPFL) (3.3 < lg BAF < 3.7), and three paraben metabolites including 4-hydroxybenzoic acid (4-HB) (3.3 < lg BAF < 3.7), methyl protocatechuate (OH-MeP), and ethyl protocatechuate (OH-EtP) (Log BAF > 3.7), exhibited varying degrees of potential bioaccumulation effect in the majority of organism samples. Furthermore, all tested chemicals in this study were at low risk quotient (RQ) levels for acute and chronic toxicity in seawater. However, the target hazard quotient (THQ) values of two paraben metabolites, 4-HB and benzoic acid (BA), were higher than 1, which indicates that paraben metabolites have the potential to adsorb into organisms, and their associated human health risks should be of great concern. Overall, the study results suggest that the occurrence and risks of emerging EDCs in coastal waters are deserving of further studies, especially in densely populated regions of the world.


Subject(s)
Aquatic Organisms/drug effects , Benzhydryl Compounds/analysis , Endocrine Disruptors/analysis , Environmental Monitoring/methods , Estuaries , Parabens/analysis , Phenols/analysis , Rivers/chemistry , Aquatic Organisms/metabolism , Benzhydryl Compounds/metabolism , China , Endocrine Disruptors/metabolism , Humans , Parabens/metabolism , Phenols/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...