Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Opt Express ; 15(4): 2133-2151, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38633076

ABSTRACT

Hypertension is typically manifested as a latent symptom that requires detection through specialized equipment. This poses an inconvenience for individuals who need to undergo long-term blood pressure monitoring in their daily lives. Therefore, there is a need for a portable, non-contact method for estimating blood pressure. However, current non-contact blood pressure estimation methods often rely on relatively narrow datasets, lacking a broad range of blood pressure distributions. Additionally, their applicability is confined to controlled experimental environments. This study proposes a non-contact blood pressure estimation method suitable for various life scenarios, encompassing multiple age groups, diverse ethnicities, and individuals with different skin tones. The aim is to enhance the practicality and accuracy of existing non-contact blood pressure estimation methods. The research extracts the imaging photoplethysmogram (IPPG) signal from facial videos and processes the signal through four layers of filtering operations to obtain an IPPG signal reflecting pulse wave variations. A CNN+BiLSTM+GRU network structure is constructed to improve the accuracy of current non-contact blood pressure estimation methods. In comparison to existing approaches, the mean absolute error (MAE) for systolic blood pressure (SBP) and diastolic blood pressure (DBP) is reduced by 13.6% and 16.4%, respectively.

2.
Sensors (Basel) ; 23(12)2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37420695

ABSTRACT

In this paper, a multi-stage deep learning blood pressure prediction model based on imaging photoplethysmography (IPPG) signals is proposed to achieve accurate and convenient monitoring of human blood pressure. A camera-based non-contact human IPPG signal acquisition system is designed. The system can perform experimental acquisition under ambient light, effectively reducing the cost of non-contact pulse wave signal acquisition while simplifying the operation process. The first open-source dataset IPPG-BP for IPPG signal and blood pressure data is constructed by this system, and a multi-stage blood pressure estimation model combining a convolutional neural network and bidirectional gated recurrent neural network is designed. The results of the model conform to both BHS and AAMI international standards. Compared with other blood pressure estimation methods, the multi-stage model automatically extracts features through a deep learning network and combines different morphological features of diastolic and systolic waveforms, which reduces the workload while improving accuracy.


Subject(s)
Deep Learning , Humans , Blood Pressure/physiology , Photoplethysmography/methods , Blood Pressure Determination/methods , Neural Networks, Computer
3.
Sensors (Basel) ; 17(3)2017 Mar 03.
Article in English | MEDLINE | ID: mdl-28273818

ABSTRACT

Although wrist-type photoplethysmographic (hereafter referred to as WPPG) sensor signals can measure heart rate quite conveniently, the subjects' hand movements can cause strong motion artifacts, and then the motion artifacts will heavily contaminate WPPG signals. Hence, it is challenging for us to accurately estimate heart rate from WPPG signals during intense physical activities. The WWPG method has attracted more attention thanks to the popularity of wrist-worn wearable devices. In this paper, a mixed approach called Mix-SVM is proposed, it can use multi-channel WPPG sensor signals and simultaneous acceleration signals to measurement heart rate. Firstly, we combine the principle component analysis and adaptive filter to remove a part of the motion artifacts. Due to the strong relativity between motion artifacts and acceleration signals, the further denoising problem is regarded as a sparse signals reconstruction problem. Then, we use a spectrum subtraction method to eliminate motion artifacts effectively. Finally, the spectral peak corresponding to heart rate is sought by an SVM-based spectral analysis method. Through the public PPG database in the 2015 IEEE Signal Processing Cup, we acquire the experimental results, i.e., the average absolute error was 1.01 beat per minute, and the Pearson correlation was 0.9972. These results also confirm that the proposed Mix-SVM approach has potential for multi-channel WPPG-based heart rate estimation in the presence of intense physical exercise.


Subject(s)
Heart Rate , Algorithms , Artifacts , Humans , Photoplethysmography , Signal Processing, Computer-Assisted , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL
...