Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 470: 134200, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38593661

ABSTRACT

Non-ferrous metal smelting emits large amounts of organic compounds into the atmosphere. Herein, 20 parent polycyclic aromatic hydrocarbons (PPAHs), 9 nitrated PAHs (NPAHs), 14 chlorinated PAHs (ClPAHs), and 6 alkylated PAHs (APAHs) in atmospheric samples from a typical non-ferrous metal smelting plant (NMSP) and residential areas were detected. In NMSP, benzo[a]pyrene, dibenz[a,h]anthracene, 6-nitrochrysene, 9-chlorofluorene, and 1-methylfluorene were the predominant compounds in the particulate phase, while phenanthrene constituted 57.3% in the gaseous phase. The concentration of PAHs in residential areas around NMSP was 1.8 times higher than that in the control area. Additionally, there was a significant negative correlation between the concentration and the distance from the NMSP. In terms of health risks, although the skin penetration coefficient of PM2.5 is smaller than that of the gaseous phase, dermal absorption of PM2.5 posed a greater threat to the population, the incremental lifetime cancer risk (ILCR) of NMSP was 1.8 × 10-4. After considering bioavailability, BILCR decreased by 1-2 orders of magnitude in different regions, and dermal absorption decreased more than inhalation intake. Nevertheless, the dermal absorption of PM2.5 in NMSP still presents a probable carcinogenic risk. This study provides a necessary reference for the subsequent control of NMSP contamination.


Subject(s)
Air Pollutants , Biological Availability , Metallurgy , Polycyclic Aromatic Hydrocarbons , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Air Pollutants/analysis , Humans , Risk Assessment , Particulate Matter/analysis , Environmental Monitoring
2.
Chemosphere ; 341: 139994, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37652242

ABSTRACT

Coking facilities release large quantities of polycyclic aromatic hydrocarbons (PAHs) and their derivatives into the ambient air. Here we examined the profiles, spatial distributions, and potential sources of atmospheric PAHs and their derivatives in an industrial coking plant and its surrounding environment (gaseous and particulate). The mean concentrations of PAHs, nitrated PAHs (NPAHs), chlorinated PAHs (ClPAHs), and brominated PAHs (BrPAHs) in the air of the coking facility were 923, 23.8, 16.7 and 4.25 ng m-³, respectively, 1-2 orders of magnitude higher than those in the surrounding area and the control area. Linear regressions between contaminant concentrations and distance from the coking facility suggested that the concentrations of PAHs (r2 = 0.82, p < 0.05), NPAHs (r2 = 0.77, p < 0.01), and BrPAHs (r2 = 0.62, p < 0.01) were negatively correlated with distance. Additionally, the particle-bound fractions of PAHs and their derivatives were significantly correlated with their molecular weights (p < 0.01). Based on the calculation of the gas/particle partitioning coefficients (log KP) for PAHs and their derivatives and the corresponding subcooled liquid vapor pressures (log PL), the slope values for PAHs, NPAHs, ClPAHs, and BrPAHs ranged from -1 to -0.6, indicating that deposition of PAHs and their derivatives occurred through both adsorption and absorption. Five emissions sources were identified by positive matrix factorization (PMF), including coking emissions, oil pollution, industrial and combustion sources, secondary formation, and traffic emissions, with coking emissions accounting for more than 50% of total emissions. Furthermore, the results of the health risks assessment suggested that atmospheric PAHs and their derivatives in the coke plant and surrounding area negatively impacted human health.


Subject(s)
Air Pollutants , Coke , Polycyclic Aromatic Hydrocarbons , Humans , Air Pollutants/analysis , Environmental Monitoring , Polycyclic Aromatic Hydrocarbons/analysis , Nitrates , Gases , Risk Assessment , China , Particulate Matter/analysis
3.
Chemosphere ; 258: 127378, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32554023

ABSTRACT

Light driven degradation is very promising for pollutants remediation. In the present work, photochemical reaction of tetrabromobisphenol A (TBBPA) under LED white light (λ > 400 nm) irradiation system was investigated to figure out the TBBPA photochemical degradation pathways and isotope fractionation patterns associated with transformation mechanisms. Results indicated that photochemical degradation of TBBPA would happen only with addition to humic acid in air bubbling but not in N2 bubbling. For photochemical reaction of TBBPA, singlet oxygen (1O2) was found to be important reactive oxygen species for the photochemical degradation of TBBPA. 2,6-Dibromo-4-(propan-2-ylidene)cyclohexa-2,5-dienone and two isopropyl phenol derivatives were identified as the photochemical degradation intermediates by 1O2. 2,6-Dibromo-4-(1-methoxy-ethyl)-phenol was determined as an intermediate via oxidative skeletal rearrangement, reduction and O-methylation. Hydrolysis product hydroxyl-tribromobisphenol A was also observed in the reductive debromination process. In addition, to deeply explore the mechanism, carbon and bromine isotope analysis were performed using gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) and gas chromatography-multicollector inductively coupled plasma mass spectrometry (GC/MC/ICPMS) during the photochemical degradation of TBBPA. The results showed that photochemical degradation could not result in statistically significant isotope fractionation, indicated that the bond cleavage of C-C and C-Br were not the rate controlling process. Stable isotope of carbon being not fractionated will be useful for distinguishing the pathways of TBBPA and tracing TBBPA fate in water systems. This work sheds light on photochemical degradation mechanisms of brominated organic contaminants.


Subject(s)
Environmental Restoration and Remediation/methods , Photolysis , Polybrominated Biphenyls/analysis , Water Pollutants, Chemical/analysis , Humic Substances/analysis , Hydroxyl Radical/chemistry , Isotopes , Models, Theoretical , Oxidation-Reduction , Polybrominated Biphenyls/radiation effects , Singlet Oxygen/chemistry , Water Pollutants, Chemical/radiation effects
4.
Chemosphere ; 237: 124461, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31374395

ABSTRACT

Due to the detoxification of tetrabromobisphenol A (TBBPA) varies from different bacterial strains and depends on their specific enzymatic machinery, it is necessary to understand them for potential in situ bioremediation application. The special ability of our previously isolated Ochrobactrum sp. T to simultaneously debrominate and aerobic mineralize TBBPA urgent us to continuously study its degradation molecular mechanism. Herein, the purification and characterization of the dehalogenase which can debrominate TBBPA was investigated based on its corresponding encoding gene tbbpaA. Results showed that an enzyme with molecular mass of 117 kDa, Km of 26.6 µM and Vmax of 0.133 µM min-1 mg-1 was purified and designated as bromophenol dehalogenase. It was the only detected dehalogenase which exhibited TBBPA degradation ability (78%). Moreover, its activity was significantly enhanced by adding NADPH or methyl viologen to the reaction solution. The high similarity of substrate spectrum between the dehalogenase from the recombinant strain and the wild strain further indicated that it was the main dehalogenase responsible for the debromination in wild strain. Based on three identified metabolites, a metabolic pathway of TBBPA by purified enzyme under oxic condition was proposed. This study provides an excellent dehalogenase candidate for mechanistic study of aerobic dehalogenation of brominated aromatic compound.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Hydrolases/metabolism , Ochrobactrum/metabolism , Polybrominated Biphenyls/metabolism , Aerobiosis , Bacterial Proteins/isolation & purification , Chromatography, High Pressure Liquid , Environmental Pollutants/metabolism , Molecular Weight , NADP/metabolism , Ochrobactrum/enzymology , Paraquat/metabolism , Substrate Specificity , Tandem Mass Spectrometry
5.
Chemosphere ; 184: 120-126, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28586652

ABSTRACT

Bisphenol A (BPA) is a synthetic chemical primarily used to produce polycarbonate plastics and epoxy resins. Significant industrial and consumer's consumption of BPA-containing products has contributed to extensive contamination in different environmental matrices. In this study, microcosms bioaugmented with Bacillus sp. GZB were constructed to investigate BPA biodegradation, identify the main bacterial community, and evaluate bacterial community responses in the microcosms. Under aerobic conditions, BPA was quickly depleted as a result of bioaugmentation with Bacillus sp. GZB in water-sediment contaminated with pollutants. The pollutants used were generally associated with the electronic wastes (mobile phones, computers, televisions) dismantling process. Adding BPA affected the bacterial community composition in the water-sediment. Furthermore, BPA biodegradation was enhanced by adding electron donors/co-substrates: humic acid, NaCl, glucose, and yeast extract. Metagenomic analysis of the total 16S rRNA genes from the BPA-degrading microcosms with bioaugmentation illustrated that the genera Bacillus, Thiobacillus, Phenylobacterium, and Cloacibacterium were dominant after a 7-week incubation period. A consortium of microorganisms from different bacterial genera may be involved in BPA biodegradation in electronic waste contaminated water-sediment. This study provides new insights about BPA bioaugmentation and bacterial ecology in the BPA-degrading environment.


Subject(s)
Bacillus/physiology , Benzhydryl Compounds/metabolism , Biodegradation, Environmental , Phenols/metabolism , Water Pollutants, Chemical/metabolism , Bacillus/metabolism , Benzhydryl Compounds/analysis , Electronic Waste/analysis , Geologic Sediments/chemistry , Phenols/analysis , RNA, Ribosomal, 16S/metabolism , Water/analysis , Water Pollutants, Chemical/analysis
6.
Environ Geochem Health ; 39(6): 1487-1499, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28315117

ABSTRACT

Three important groups of semi-volatile organic compounds (SVOCs), polycyclic aromatic hydrocarbons (PAHs), organic chlorinated pesticides (OCPs) and phthalate esters (PAEs), were produced by various human activities and entered the water body. In this study, the pollution profiles of three species including 16 PAHs, 20 OCPs and 15 PAEs in water along the Beijiang River, China were investigated. The concentrations of Σ16PAHs in the dissolved and particulate phases were obtained as 69-1.5 × 102 ng L-1 and 2.3 × 103-8.6 × 104 ng g-1, respectively. The levels of Σ20OCPs were 23-66 ng L-1 (dissolved phase) and 19-1.7 × 103 ng g-1 (particulate phase). Nevertheless, higher levels of PAEs were found both in the dissolved and particulate phases due to abuse use of plastic products. Furthermore, non-cancer and cancer risks caused by these SVOCs through the ingestion absorption and dermal absorption were also assessed. There was no non-cancer risk existed through two kinds of exposure of them at current levels, whereas certain cancer risk existed through dermal absorption of PAHs in the particulate phase in some sampling sites. The results will show scientific insights into the evaluation of the status of combined pollution in river basins, and the determination of strategies for incident control and pollutant remediation.


Subject(s)
Hydrocarbons, Chlorinated/analysis , Pesticides/analysis , Phthalic Acids/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Population Health , Rivers , Volatile Organic Compounds/analysis , Water Pollutants, Chemical/analysis , China , Environmental Monitoring/methods , Environmental Restoration and Remediation/methods , Esters , Humans , Hydrocarbons, Chlorinated/toxicity , Neoplasms/chemically induced , Pesticides/toxicity , Phthalic Acids/chemistry , Phthalic Acids/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Risk Assessment , Solubility , Volatile Organic Compounds/toxicity , Water Pollutants, Chemical/toxicity
7.
Sci Total Environ ; 575: 573-580, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27613672

ABSTRACT

The substance 2,4,6-Tribromophenol (TBP) is used as a flame retardant in electronic and electric devices, and is a replacement for pentachlorophenol in wood preservation. TBP is a contaminant in different environmental matrices, at levels where treatment is required. This study examined the relationship between the bioaugmention of TBP degradation and the evolution of the microbial community in river water/sediment microcosms. When compared with unamended controls, bioaugmentation with Bacillus sp. GZT effectively enhanced TBP biodegradation, with approximately 40.7% of the TBP removal after a 7-week incubation period, without a lag phase (p<0.01). Amendments with 2-bromophenol, 2,6-dibromophenol, and 2,4-dibromophenol did not promote TBP biodegradation in river water/sediments (p>0.05). However, TBP biodegradation was enhanced by adding other additives, including NaCl, humic acid, sodium lactate, and sodium propionate alone, especially glucose and yeast extract. A metagenomics analysis of the total 16S rRNA genes from the treatment system with bioaugmentation showed that four microbial phyla were dominant: Proteobacteria (52.08-66.22%), Actinobacteria (20.03-5.47%), Bacteroidetes (6.68-13.68%), and Firmicutes (4.53-20.83%). This study highlights the possible benefits using bioaugmentation with GZT to remediate TBP-polluted water and sediments.


Subject(s)
Bacillus/metabolism , Biodegradation, Environmental , Geologic Sediments/chemistry , Phenols/metabolism , Water/chemistry , Flame Retardants/metabolism , Metagenome , RNA, Ribosomal, 16S
8.
Environ Pollut ; 219: 596-603, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27350038

ABSTRACT

To reveal the emission patterns of brominated flame retardants (BFRs) in the Beijiang River, South China, concentrations of polybrominated diphenyl ethers (PBDEs) and phenolic BFRs (2,4,6-tribromophenol (TBP), pentabromophenol (PeBP), tetrabromobisphenol A (TBBPA)), and bisphenol A (BPA) in water and sediments were simultaneously measured, and the geographic information system (GIS) were applied to analyse their emission patterns. Results showed that PBDEs, TBP, PeBP, TBBPA and BPA were ubiquitous in the water and sediment samples collected from the Beijiang River. However, most of the concentrations were very low or below the detection limits (DL). In water, Σ20PBDEs (sum of all 20 PBDEs congeners) levels ranged from < DL to 232 pg L-1, with the predominant congeners containing low bromine contents. The levels of TBP, PeBP, TBBPA and BPA in water were lower than 810 pg L-1. In sediments, Σ20PBDEs varied from 260 to 5640 pg g-1 dry weight (d.w.), with the predominant congeners containing high bromine contents. The levels of TBP, PeBP, TBBPA and BPA were lower than 600 pg g-1 d.w.. Risk assessments indicated that the water and sediments at the sampling locations imposed no estrogenic risk (E2EQ < 1.0 ng E2 L-1), and the eco-toxicity assessment at three trophic levels also showed no risk at all sampling sites in water (RQTotal < 1.0), but with a potential eco-toxicity at some sampling points in sediments (1.0

Subject(s)
Benzhydryl Compounds/analysis , Geologic Sediments/chemistry , Halogenated Diphenyl Ethers/analysis , Phenols/analysis , Polybrominated Biphenyls/analysis , Rivers/chemistry , China , Environmental Monitoring , Estrogens/analysis , Flame Retardants/analysis , Risk Assessment , Water Pollutants, Chemical/analysis
9.
Environ Pollut ; 208(Pt B): 796-802, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26602791

ABSTRACT

In situ remediation of contaminated sediment using microbes is a promising environmental treatment method. This study used bioaugmentation to investigate the biodegradation of tetrabromobisphenol A (TBBPA) in sediment microcosms collected from an electronic-waste recycling site. Treatments included adding possible biodegradation intermediates of TBBPA, including 2,4-dibromophenol (2,4-DBP), 2,4,6-tribromophenol (TBP), and bisphenol A (BPA) as co-substrates. Bioaugmentation was done with Ochrobactrum sp. T (TBBPA-degrader) and a mixed culture of Ochrobactrum sp. T, Bacillus sp. GZT (TBP-degrader) and Bacillus sp. GZB (BPA-degrader). Results showed that bioaugmentation with Ochrobactrum sp. T significantly improved TBBPA degradation efficiencies in sediment microcosms (P < 0.01); aerobic conditions increased the microbes' degradation activities. Co-substrates 2,4-DBP, TBP and BPA inhibited biodegradation of TBBPA. A metagenomic analysis of total 16S rRNA genes from the treated sediment microcosms showed that the following dominant genera: Ochrobactrum, Parasegetibacter, Thermithiobacillus, Phenylobacterium and Sphingomonas. The genus level of Ochrobactrum increased with increased degradation time, within 10-week of incubation. Microbes from genus Ochrobactrum are mainly linked to enhance the TBBPA biodegradation.


Subject(s)
Geologic Sediments/chemistry , Polybrominated Biphenyls/metabolism , Rivers/microbiology , Bacillus/metabolism , Benzhydryl Compounds/chemistry , Biodegradation, Environmental/drug effects , Biodiversity , Electronic Waste/analysis , Geologic Sediments/microbiology , Ochrobactrum/metabolism , Phenols/chemistry , Polybrominated Biphenyls/analysis , Polybrominated Biphenyls/chemistry , RNA, Ribosomal, 16S , Rivers/chemistry , Sphingomonas
10.
Rapid Commun Mass Spectrom ; 29(1): 54-60, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25462363

ABSTRACT

RATIONALE: Compound-specific stable carbon isotope analysis of phenolic brominated flame retardants (BFRs) and bisphenol A (BPA) has proven informative to discriminate their source and fate apportionment in the environment. However, because these compounds contain highly polar functional groups and exist as complex mixtures in environment matrices, derivatization is a necessary step, which adds additional non-analyte carbon atoms for analyses and may alter the original stable carbon isotope ratio. It is, therefore, imperative to gain an insight into the relationship between the δ(13) C values of the BFRs and BPA derivatives and those of underivatized BFRs and BPA. METHODS: The δ(13) C values of BFRs and BPA N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) derivatives were measured by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). The δ(13) C values of the BSTFA reagent and the standard underivatized BFRs and BPA were determined using elemental analyzer/isotope ratio mass spectrometry (EA/IRMS). The experimentally obtained δ(13) C values for BFRs and BPA derivatives were then compared with the theoretically calculated values. RESULTS: The derivatization process introduces no isotopic fractionation for BFRs and BPA (the average difference between the theoretically calculated and experimentally obtained δ(13) C values was 0.06 ± 0.15‰, within the precision limits of the GC/C/IRMS measurements). Therefore, the δ(13) C values for the original underivatized BFRs and BPA were computed through a mass balance equation. CONCLUSIONS: This work offers a novel tool to research the biotic or abiotic transformation processes of BFRs and BPA in the environment and will offer a perspective for the identification of the environmental source and fate of these organic compounds.

11.
Environ Geochem Health ; 37(3): 457-73, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25503846

ABSTRACT

The aim of this study was to assess the pollution profiles of various typical brominated flame retardants in water and surface sediment near a typical electronic waste dismantling region in southern China. We found that polybrominated diphenyl ethers (PBDEs), 2,4,6-tribromophenol (TBP), pentabromophenol (PeBP), tetrabromobisphenol A (TBBPA), and bisphenol A (BPA) were ubiquitous in the water and sediment samples collected in the study region. In water, Σ19PBDEs (sum of all 20 PBDE congeners studied except BDE-209, which was below the detection limit) levels ranged from 0.31 to 8.9 × 10(2) ng L(-1). TBP, PeBP, TBBPA, and BPA concentrations in the water samples ranged from not being detectable (nd-under the detection limit) to 3.2 × 10(2) (TBP), from nd to 37 (PeBP), from nd to 9.2 × 10(2) (TBBPA) and from nd-8.6 × 10(2) ng L(-1) (BPA). In sediment, Σ19PBDEs ranged from nd to 5.6 × 10(3) ng g(-1), while BDE-209 was the predominant congener, with a range of nd to 3.5 × 10(3) ng g(-1). Tri- to hepta-BDE concentrations were significantly (p < 0.01) correlated with each other, except for BDE-71 and BDE-183, and octa- to nona-BDEs concentrations were significantly (p < 0.05) correlated with each other, except for BDE-208. BDE-209 was not significantly correlated with tri- to nona-BDEs. Risk assessments indicated that the water and sediment across the sampling sites posed no estrogenic risk. However, different eco-toxicity risk degrees at three trophic levels did exist at most sampling sites.


Subject(s)
Flame Retardants/analysis , Halogenated Diphenyl Ethers/analysis , Hydrocarbons, Brominated/analysis , Phenols/analysis , Risk Assessment , Water Pollutants, Chemical/analysis , China , Electronic Waste , Endocrine Disruptors/analysis , Environmental Monitoring , Geologic Sediments/analysis , Refuse Disposal
12.
Ecotoxicol Environ Saf ; 104: 220-5, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24726932

ABSTRACT

The effect of concurrent degradation of tetrabromobisphenol A (TBBPA) by the strain Ochrobactrum sp. T under aerobic condition was investigated. The results demonstrated that four extra energy source-addition systems still followed pseudo-first order kinetics. The addition of ethanol or glucose could promote the biodegradation ability of Ochrobactrum sp. T to TBBPA, and 90.1 percent and 77.5 percent of TBBPA (5mg L(-1)) could be removed with corresponding TBBPA half-lives of 26 and 36h, respectively, after 96h reaction. Comparatively, the degradation efficiency of the sole TBBPA system was only 72.9 percent under the same condition. In contrast, two other co-substrates 2,4,6-tribromophenol (TBP) and bisphenol A (BPA) showed a negative effect on the TBBPA biodegradation, and the degradation efficiencies of TBBPA were achieved as 44.7 percent and 67.4 percent, respectively. For the TBBPA+TBP system, the competitive inhibition for the TBBPA debromination was less than the inhibition of the toxicity to the bacterium. While for the TBBPA+BPA system, the degradation of TBBPA could be promoted at the beginning of the reaction, and was then inhibited slightly with further prolonging of reaction time. This is probably due to the substrates being oxidized, and BPA can consume partial oxygen and provide the electrons during the concurrent biodegradation process. In addition, although higher estrogenic activity could be detected for the debrominated intermediates in TBBPA co-degradation process than the original TBBPA, the estrogenicity of the whole system still decreased finally after 96h degradation.


Subject(s)
Ochrobactrum/metabolism , Polybrominated Biphenyls/metabolism , Aerobiosis , Benzhydryl Compounds/chemistry , Biodegradation, Environmental , Environmental Pollutants/metabolism , Estrogens/chemistry , Phenols/chemistry
13.
Bioresour Technol ; 114: 224-30, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22507902

ABSTRACT

A facultative anaerobic bacterial strain, Bacillus sp. GZB, was isolated and identified to effectively degrade bisphenol A (BPA) under anaerobic and aerobic conditions. Under anaerobic condition, Fe(3+) can be used as an electron acceptor for Bacillus sp. GZB, while 5 mg L(-1) BPA can be fully removed and 51% was mineralized under optimal aerobic conditions. Additionally, seven metabolites were identified by GC-MS, four of which were doubly confirmed by authentic standards (two synthesized) and three of four initial degradation intermediates were also quantified during BPA aerobic degradation. The evolution of 1-(4-hydroxyphenyl)ethanone showed a similar tendency with estrogenic activity changing during BPA biodegradation course, indicating its potential estrogenicity. The estrogenicity temporary increase first and decline ultimately during BPA degradation revealing the GZB can effectively detoxify BPA as well as its estrogenic intermediates. This was the first study to report a facultative anaerobic strain can degrade BPA with or without of oxygen.


Subject(s)
Bacillus/classification , Bacillus/metabolism , Estrogens/metabolism , Phenols/isolation & purification , Phenols/metabolism , Benzhydryl Compounds , Biodegradation, Environmental , Kinetics , Metabolic Clearance Rate , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...