Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Light Sci Appl ; 11(1): 269, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36100591

ABSTRACT

Full pump depletion corresponds to the upper limit of the generated signal photons relative to the pump pulse; this allows the highest peak power to be produced in a unit area of ultraintense laser amplifiers. In practical systems based on optical parametric chirped-pulse amplification, however, the typical pump depletion is only ~35%. Here, we report quasi-parametric chirped-pulse amplification (QPCPA) with a specially designed 8-cm-thick Sm:YCOB crystal that highly dissipates the idler and hence improves pump depletion. We demonstrate 56% QPCPA energy efficiency for an 810-nm signal converted from a 532-nm pump, or equivalently 85% pump depletion. As another advantage, such a record high depletion greatly suppresses the parametric superfluorescence noise in QPCPA to only ~1.5 × 10-6 relative to the amplified signal energy. These results pave the way to beyond the ten-petawatt peak power of the currently most intense lasers.

2.
Opt Express ; 25(21): 25149-25164, 2017 Oct 16.
Article in English | MEDLINE | ID: mdl-29041186

ABSTRACT

Quasi-parametric chirped pulse amplification (QPCPA) is a new scheme that enables the amplification of chirped signal pulses without back conversion by depleting the idler pulses. In this paper, we present a numerical study on the bandwidth, efficiency, and robustness of QPCPA. Self-locked phase among the interacting waves is found to be the underlying mechanism for the suppression of back conversion, which allows signal efficiency approaching to the quantum limit even under the phase-mismatch condition, and thus greatly increases the phase-mismatch tolerance of QPCPA. We demonstrate that QPCPA can break through the trade-off between the efficiency and bandwidth encountered in conventional optical parametric amplification, hence supporting highly efficient amplification of few-cycle pulses.

SELECTION OF CITATIONS
SEARCH DETAIL
...