Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
2.
J Colloid Interface Sci ; 602: 459-468, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34144303

ABSTRACT

Catalytic hydrogenation of sulfur-containing substrates is an important and challenging reaction in the chemical industry. In this work, active carbon supported PdZn alloy catalyst was prepared by self-reduction method using zinc acetate as precursor without H2 atmosphere. During the process of self-reduction, Zn2+ was firstly reduced to Zn0 at 300 °C by active carbon and reducing gas from the decompose of acetate under the promotion of metal Pd, and Zn0 further reacted with metal Pd to form PdZn alloy phase at 500 °C. These PdZn/AC-X catalysts showed the higher conversion and stability for the hydrogenation of 4-nitrothioanisole than the Pd/AC-600 catalyst. The excellent catalytic performance of PdZn/AC-600 catalyst can be attributed to formation of PdZn alloy, in which electron-rich Pd atoms weaken the binding ability between Pd and S and enhance the sulfur-resistance of catalyst. On the other hand, H2-TPR and DFT theory calculation further indicated that the PdZn alloy phase weakens the adsorption capacity of S. Compared with the Pd/AC-600 catalyst, the PdZn alloy phase in PdZn/AC-600 catalyst has not changed and only a small amount of sulfur-containing substrates deposited on the catalyst surface after three cycles. PdZn/AC-600 catalyst exhibited improved stability in the hydrogenation of 4-nitrothioanisole and can be used three cycles with little decrease in activity.


Subject(s)
Alloys , Palladium , Catalysis , Hydrogenation , Zinc
SELECTION OF CITATIONS
SEARCH DETAIL
...