Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 172(2-3): 1252-7, 2009 Dec 30.
Article in English | MEDLINE | ID: mdl-19717237

ABSTRACT

In the present study, a wastewater treatment system for the ethanol fermentation industry was developed by recycling distillery wastewater. The waste was able to be recycled for the next fermentation after being treated with bio-flocculation process. The bio-flocculation process contains three steps: screening, treatment with polyaspartic acid and filtration. When the filtrate from this process was recycled, the average ethanol production yield was very close to that in the conventional process using tap water. In contrast, the recycle of wastewater without flocculation and with chemical flocculation showed negative effects on ethanol yield as recycling was repeated. This new process was confirmed to have stable operation over ten recycles. Hazardous materials influencing distillery wastewater recycles on fermentation were also considered. It was found that the content of suspended solids (SS), volatile acid and Fe ions inhibited fermentation and resulted in a decreased ethanol yield. Bio-flocculation was shown to be an effective way to diminish the content of inhibitory compounds drastically when the waste was recirculated.


Subject(s)
Fermentation , Industrial Waste/prevention & control , Water Purification/methods , Alcoholic Beverages , Conservation of Natural Resources , Ethanol , Filtration , Flocculation , Peptides
2.
J Hazard Mater ; 164(2-3): 587-91, 2009 May 30.
Article in English | MEDLINE | ID: mdl-18834665

ABSTRACT

In this paper, Sn-doped TiO(2) photocatalyst was prepared and immobilized on a glass substrate using an about-to-gel SiO(2) sol as a nanoglue. The characterization of the Sn-doped TiO(2) by XRD showed that 5% Sn content is formed by anatase and rutile crystallites. Characterization of the nanoglued photocatalyst by the BET measurement, TEM, and SEM showed that the photocatalyst was a nanoporous material with a high-surface area. The Sn-doped TiO(2) was uniformly dispersed within the three-dimensional network of the silica in the form of nanoparticles. The nanoglued photocatalyst showed high photocatalytic activity during the degradation of penicillin under UV light. The effect of different Sn content on the amount of hydroxyl radical was discussed by using salicylic acid as probe molecules. The results show that an appropriate amount of Sn dopant can greatly increase the amount of hydroxyl radicals generated by TiO(2) nanoparticles, which are responsible for the obvious increase of photocatalytic activity.


Subject(s)
Photochemical Processes , Titanium/chemistry , Catalysis , Environmental Restoration and Remediation/methods , Penicillins/radiation effects , Silicon Dioxide , Tin/chemistry , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...