Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 265(Pt 1): 130834, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484815

ABSTRACT

Blending poly (butylene adipate-co-terephthalate) (PBAT) and polylactic acid (PLA) is a cost-effective strategy to obtain biodegradable plastic with complementary properties. However, the incompatibility between PBAT and PLA is a great challenge for fabricating high-performance composite films. Herein, the ethyl acetate fractionated lignin with the small glass transition temperature and low molecular weight was achieved and incorporated into the PBAT/PLA composite as a compatibilizer. The fractionated lignin can be uniformly dispersed within the PBAT/PLA matrix through a melt blending process and interact with the molecular chain of PBAT and PLA as a bonding bridge, which enhances the intermolecular interactions and reduces the interfacial tension of PBAT/PLA. By adding fractionated lignin, the tensile strength of the PBAT/PLA composite increased by 35.4 % and the yield strength increased by 37.7 %. Owing to lignin, the composite films possessed the ultraviolet shielding function and exhibited better water vapor barrier properties (1.73 ± 0.08 × 10-13 g·cm/cm2·s·Pa). This work conclusively demonstrated that fractionated lignin can be used as a green compatibilizer and a low-cost functional filler for PBAT/PLA materials, and provides guidance for the application of lignin in biodegradable plastics.


Subject(s)
Alkenes , Biodegradable Plastics , Lignin , Phthalic Acids , Adipates , Poly A , Polyesters
2.
Bioengineered ; 14(1): 2252138, 2023 12.
Article in English | MEDLINE | ID: mdl-37670430

ABSTRACT

Spent mushroom substrate (SMS) is the residual biomass generated after harvesting the fruitbodies of edible/medicinal fungi. Disposal of SMS, the main by-product of the mushroom cultivation process, often leads to serious environmental problems and is financially demanding. Efficient recycling and valorization of SMS are crucial for the sustainable development of the mushroom industry in the frame of the circular economy principles. The physical properties and chemical composition of SMS are a solid fundament for developing several applications, and recent literature shows an increasing research interest in exploiting that inherent potential. This review provides a thorough outlook on SMS exploitation possibilities and discusses critically recent findings related to specific applications in plant and mushroom cultivation, animal husbandry, and recovery of enzymes and bioactive compounds.


Valorization of spent substrate is crucial for a sustainable mushroom industry.The review covers spent mushroom substrate (SMS) valorization for multiple uses.SMS composition and mushroom species are essential factors for its exploitation.SMS valorization forms an integral part of cascade use of plant biomass.


Subject(s)
Agaricales , Animals , Biomass , Recycling , Sustainable Development
3.
Bioresour Technol ; 387: 129663, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37573980

ABSTRACT

The strategy of high reflux ratio and long solids retention time was adopted to realize efficient nitrogen removal from real shale oil wastewater. This was undertaken with a low chemical oxygen demand to total nitrogen (COD/TN) ratio by strengthening aerobic denitrification in an anoxic/aerobic membrane bioreactor (A/O-MBR). The TN removal load climbed from 22 to 25 g N/(kg MLSS·d) as the COD/TN ratio declined from 8 to 3. The abundance of heterotrophic nitrifying and aerobic denitrifying (HNAD) bacteria increased by 13.8 times to 42.5%, displacing anoxic denitrifying bacteria as the predominant bacteria. The abundance of genes involved in denitrification (napAB, narGHI, norBC, nosZ) increased, however the genes related to assimilatory nitrate reduction (nirA, narB, nasC) decreased. The capacity of the dominant HNAD bacteria in an A/O-MBR to efficiently utilize a carbon source is the key to efficient nitrogen removal from shale oil wastewater with a low COD/TN ratio.


Subject(s)
Denitrification , Wastewater , Carbon , Nitrogen , Bioreactors/microbiology , Minerals , Nitrification , Sewage/microbiology
4.
Int J Biol Macromol ; 242(Pt 3): 124716, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37150374

ABSTRACT

Utilizing starch, an abundant polysaccharide, as the renewable filler to blend with poly(butylene adipate-co-terephthalate) (PBAT) is a feasible tactic to construct cost-effective and high-performance biodegradable materials. It's worth noting that the thermal processing properties of starch can be manipulated by its plasticized behavior. Herein, epoxidized soybean oil (ESO) and glycerol were used as the plasticizer for native corn starch and the plasticized starch was integrated with PBAT to manufacture starch-based biodegradable blend films. ESO breaks the hydrogen bonds between starch chains through the fatty chains grafting reaction and increases the distance between starch molecular chains due to the large molecular weight of ESO. Meanwhile, glycerol molecules are incorporated into the starch molecular chains, and fatty chains grafted starch chains, effectively reducing the intermolecular forces of molecular chains. On account of the synergistic plasticization of ESO and glycerol which possess good compatibility with PBAT, the PSG20E10 blend film achieved a tensile strength, an elongation at break of 16.11 MPa and 612.09 %, and the balanced water and oxygen permeability properties.


Subject(s)
Glycerol , Polyesters , Polyesters/chemistry , Starch/chemistry , Adipates
5.
ACS Omega ; 8(6): 5361-5376, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36816655

ABSTRACT

Cellulose fiber rejects from industrial-scale recycling of waste papers were dried and de-ashed using a combined cyclone-drying and sieving process. The upgraded fiber reject was used as a component of substrates for the cultivation of Pleurotus ostreatus and Pleurotus eryngii mushrooms. Acetic acid (AA) and acid whey (AW) were used to adjust the pH of fiber reject-based substrates. Spent substrate (SMS) was used for the production of activated biochar using H3PO4 and KOH as activating agents and pyrolysis temperatures of 500, 600, and 700 °C. The effectiveness of the biochars in removing pollutants from water was determined using acetaminophen and amoxicillin. By using a feeding rate of 250 kg/h and a drying air temperature of 70 °C, the moisture content of the raw fiber rejects (57.8 wt %) was reduced to 5.4 wt %, and the ash content (39.2 wt %) was reduced to 21.5 wt %. Substrates with 60 and 80 wt % de-ashed cellulose fiber were colonized faster than a birch wood-based control substrate. The adjustment of the pH of these two substrates to approximately 6.5 by using AA led to longer colonization times but biological efficiencies (BEs) that were higher or comparable to that of the control substrate. The contents of ash, crude fiber, crude fat, and crude protein of fruit bodies grown on fiber reject-based substrates were comparable to that of those grown on control substrates, and the contents of toxic heavy metals, that is, As, Pb, Cd, and Hg, were well below the up-limit values for food products set in EC regulations. Activated biochar produced from fiber reject-based SMS at a temperature of 700 °C resulted in a surface area (BET) of 396 m2/g (H3PO4-activated biochar) and 199 m2/g (KOH-activated biochar). For both activated biochars, the kinetics of adsorption of acetaminophen and amoxicillin were better described using the general order model. The isotherms of adsorption were better described by the Freundlich model (H3PO4-activated biochar) and the Langmuir model (KOH-activated biochar).

6.
Int J Biol Macromol ; 209(Pt A): 1065-1074, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35447265

ABSTRACT

Complex and heterogeneous structures of lignin impede its further conversion and valorization. Herein, three technical lignins (from softwood, hardwood, and grass) were fractionated with acetone solvent to reduce their structural heterogeneity, which were then blended with poly-(butylene adipate-co-terephthalate) (PBAT) to fabricate biodegradable bio-composites. Macromolecular structures of lignins and their effects on the properties of lignin/PBAT composites were thoroughly investigated. Results showed that all fractionated lignin composites displayed better properties. Particularly, the raw and fractionated softwood lignin-based composites exhibited superior performance compared with others. Benefiting from the lower molecular weight, hydroxyl groups, and condensation, acetone fractionated softwood lignin presented the lowest Tg (115.7 °C), achieving ideal melt miscibility and interfacial interaction between lignin and PBAT. The decreased Tg of lignin facilitated the lignin dispersion in the matrix and increase the mechanical strength of the composites. Overall, the fractionated technical lignin possessed desirable physical and chemical structure features, conferring composites good miscibility and mechanical properties.


Subject(s)
Lignin , Polyesters , Acetone , Adipates , Alkenes , Lignin/chemistry , Phthalic Acids , Polyesters/chemistry
7.
Bioresour Technol ; 344(Pt B): 126256, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34737055

ABSTRACT

Formulation of substrates based on three hardwood species combined with modulation of nitrogen content by whey addition (0-2%) was investigated in an experiment designed in D-optimal model for their effects on biological preproceesing of lignocellulosic feedstock by shiitake mushroom (Lentinula edodes) cultivation. Nitrogen loading was shown a more significant role than wood species for both mushroom production and lignocellulose degradation. The fastest mycelial colonisation occurred with no nitrogen supplementation, but the highest mushroom yields were achieved when 1% whey was added. Low nitrogen content resulted in increased delignification and minimal glucan consumption. Delignification was correlated with degradation of syringyl lignin unit, as indicated by a significant reduction (41.5%) of the syringyl-to-guaiacyl ratio after cultivation. No significant changes in substrate crystallinity were observed. The formation of furan aldehydes and aliphatic acids was negligible during the pasteurisation and fungal cultivation, while the content of soluble phenolics increased up to seven-fold.


Subject(s)
Lignin , Shiitake Mushrooms , Glucans , Wood
8.
Bioresour Technol ; 347: 126381, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34813922

ABSTRACT

Spent mushroom substrates (SMS) from cultivation of shiitake (Lentinula edodes) on three hardwood species were investigated regarding their potential for cellulose saccharification and for ethanolic fermentation of the produced hydrolysates. High glucan digestibility was achieved during enzymatic saccharification of the SMSs, which was related to the low mass fractions of lignin and xylan, and it was neither affected by the relative content of lignin guaiacyl units nor the substrate crystallinity. The high nitrogen content in SMS hydrolysates, which was a consequence of the fungal pretreatment, was positive for the fermentation, and it ensured ethanol yields corresponding to 84-87% of the theoretical value in fermentations without nutrient supplementation. Phenolic compounds and acetic acid were detected in the SMS hydrolysates, but due to their low concentrations, the inhibitory effect was limited. The solid leftovers resulting from SMS hydrolysis and the fermentation residues were quantified and characterized for further valorisation.


Subject(s)
Agaricales , Shiitake Mushrooms , Agaricales/metabolism , Ethanol , Fermentation , Hydrolysis , Lignin/metabolism , Shiitake Mushrooms/metabolism
9.
Quant Imaging Med Surg ; 11(4): 1313-1321, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33816170

ABSTRACT

BACKGROUND: This study aimed to examine the inflow and outflow vascular system of the caudate lobe and determine its relevance to hepatobiliary surgery. METHODS: A total of 41 cadaveric liver specimens were dissected in 2019 to evaluate the inflow and outflow vascular system of the caudate lobe. RESULTS: The Glisson's pedicles of the paracaval portion were mainly from the right pedicle in 14 cases (34.15%), mainly from the left pedicle in 22 cases (53.66%), and equally from the left and right pedicle in 5 cases (12.19%). Many thick branches of the portal vein were found behind the plane consisting of the hilar plate and Arantius ligament, but none of them were thicker than 1 mm in front of the plane. All of the veins of the caudate lobe drained into the inferior vena cava (IVC) via the anterior face. There was an avascular zone without short hepatic veins (SHVs) consisting of loose connective tissue between the retrohepatic IVC and caudate lobe, with its length and width being 45-97 mm and 6-15 mm, respectively. CONCLUSIONS: The plane consisting of the hilar plate and Arantius ligament can be regarded as the boundary between the caudate lobe and the other lobes. There is an avascular zone without SHVs consisting of loose connective tissue between the retrohepatic IVC and caudate lobe.

10.
Anal Chem ; 91(5): 3516-3524, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30758178

ABSTRACT

In the present paper, we introduce an end-to-end workflow called joint and unique multiblock analysis (JUMBA), which allows multiple sources of data to be analyzed simultaneously to better understand how they complement each other. In near-infrared (NIR) spectroscopy, calibration models between NIR spectra and responses are used to replace wet-chemistry methods, and the models tend to be instrument-specific. Calibration-transfer techniques are used for standardization of NIR-instrumentation, enabling the use of one model on several instruments. The current paper investigates both the similarities and differences among a variety of NIR instruments using JUMBA. We demonstrate JUMBA on both a previously unpublished data set in which five NIR instruments measured mushroom substrate and a publicly available data set measured on corn samples. We found that NIR spectra from different instrumentation largely shared the same underlying structures, an insight we took advantage of to perform calibration transfer. The proposed JUMBA transfer displayed excellent calibration-transfer performance across the two analyzed data sets and outperformed existing methods in terms of both prediction accuracy and stability. When applied to a multi-instrument environment, JUMBA transfer can integrate all instruments in the same model and will ensure higher consistency among them compared with existing calibration-transfer methods.

11.
Bioresour Technol ; 274: 65-72, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30500765

ABSTRACT

Hot-air (75-100 °C) pasteurisation (HAP) of birch-wood-based substrate was compared to conventional autoclaving (steam at 121 °C) with regard to shiitake growth and yield, chemical composition of heat-pretreated material and spent mushroom substrate (SMS), enzymatic digestibility of glucan in SMS, and theoretical bioethanol yield. Compared to autoclaving, HAP resulted in faster mycelial growth, earlier fructification, and higher or comparable fruit-body yield. The heat pretreatment methods did not differ regarding the fractions of carbohydrate and lignin in pretreated material and SMS, but HAP typically resulted in lower fractions of extractives. Shiitake cultivation, which reduced the mass fraction of lignin to less than half of the initial without having any major impact on the mass fraction of glucan, enhanced enzymatic hydrolysis of glucan about four-fold. The choice of heating method did not affect enzymatic digestibility. Thus, HAP could substitute autoclaving and facilitate combined shiitake mushroom and bioethanol production.


Subject(s)
Ethanol/metabolism , Shiitake Mushrooms/metabolism , Glucans/metabolism , Hydrolysis , Lignin/metabolism , Shiitake Mushrooms/growth & development , Steam , Wood/chemistry
12.
Anal Bioanal Chem ; 409(9): 2449-2460, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28116491

ABSTRACT

Commercial mushroom growth on substrate material produces a heterogeneous waste that can be used for bioenergy purposes. Hyperspectral imaging in the near-infrared (NHI) was used to experimentally study a number of spent mushroom substrate (SMS) packed samples under different conditions (wet vs. dry, open vs. plastic covering, and round or cuboid) and to explore the possibilities of direct characterization of the fresh substrate within a plastic bag. Principal components analysis (PCA) was used to remove the background of images, explore the important studied factors, and identify SMS and mycelia (Myc) based on the pixel clusters within the score plot. Overview PCA modeling indicated high moisture content caused the most significant effects on spectra followed by the uneven distribution of Myc and the plastic cover. There were well-separated pixel clusters for SMS and Myc under different conditions: dry, wet, or wet and plastic covering. The loading peaks of the related component and the second derivative of the mean spectra of pixel clusters of SMS and Myc indicated that there are chemical differences between SMS and Myc. Partial least squares discriminant analysis (PLS-DA) models were calculated and classification of SMS and Myc was successful, whether the materials were dry or wet. Peak shifts because of high moisture content and unexpected peaks from the plastic covering were found. Although the best results were obtained for dried cylinders, it was shown that almost equally good results could be obtained for the wet material and for the wet material covered by plastic. Furthermore, PLS-DA prediction showed that a side face hyperspectral image could represent the information for the entire SMS cylinder when Myc was removed. Thus, the combination of NHI and multivariate image analysis has great potential to develop calibration models to directly predict the contents of water, carbohydrates, lignin, and protein in wet and plastic-covered SMS cylinders.


Subject(s)
Agaricales , Spectroscopy, Near-Infrared/methods , Models, Theoretical , Multivariate Analysis , Principal Component Analysis
13.
Anal Bioanal Chem ; 407(18): 5443-52, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25956599

ABSTRACT

Based on a factorial experimental design (three locations × three cultivars × five harvest times × four replicates) conducted with the objective of investigating variations in fuel characteristics of cassava stem, a multivariate data matrix was formed which was composed of 180 samples and 10 biomass properties for each sample. The properties included as responses were two different calorific values and ash, N, S, Cl, P, K, Ca, and Mg content. Overall principal component analysis (PCA) revealed a strong clustering for the growing locations, but overlapping clusters for the cultivar types and almost no useful information about harvest times. PCA using a partitioned data set (60 × 10) for each location revealed a clustering of cultivars. This was confirmed by soft independent modelling of class analogy (SIMCA) and partial-least-squares discriminant analysis (PLS-DA), and indicated that the locations gave meaningful information about the differences in cultivar, whereas harvest time was not found to be a differentiating factor. Using the PLS technique, it was revealed that ash, K, and Cl content were the most important responses for PLS-DA models. Furthermore, using PLS regression of fuel and soil variables it was also revealed that fuel K and ash content were correlated with the soil P, Si, Ca, and K content, whereas fuel Cl content was correlated with soil pH and content of organic carbon, N, S, and Mg in the soil. Thus, the multivariate modelling used in this study reveals the possibility of performing rigorous analysis of a complex data set when an analysis of variance may not be successful.


Subject(s)
Biomass , Manihot/chemistry , Plant Stems/chemistry , Biofuels/analysis , Discriminant Analysis , Least-Squares Analysis , Models, Biological , Principal Component Analysis , Soil/chemistry
14.
Bioresour Technol ; 99(3): 479-85, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17382539

ABSTRACT

Five potential energy crops in northern China were examined for fuel characteristics over different harvest times to test whether or not a delayed harvest improves fuel quality in a semiarid area in China as is the case in northern Europe and North America. The five crops include indigo bush (Amorpha fruticosa), sand willow (Salix cheilophila), switch grass (Panicum virgatum), reed canary grass (Phalaris arundinacea), and sainfoin (Onobrychis viciifolia). These crops are considered as fuels for thermal conversion. From September 2002 to April 2003, biomass was sampled monthly, and the effects of harvest time on the fuel characteristics of the five crops were studied. With respect to ash and some undesired element contents in biomass, a delayed harvest in spring resulted in a better fuel quality than a traditional harvest in autumn. Of the five species, indigo bush and sand willow had the lowest ash contents when harvested in spring. Switch grass is a promising herbaceous energy crop in semiarid areas in terms of its yield, fuel characteristics, and low water use. Chlorine had the most significant correlation with harvest time and ash content in the biomass. In a comparison with the biofuel crops in Europe and North America, a much higher proportion of chlorine was found in all examined plants. The results from this study indicate that an energy crop with delayed harvest may extend fuel resources and conserve soil in semiarid regions in northern China, practices that will help maintain and improve economical and ecological sustainability.


Subject(s)
Crops, Agricultural , Energy-Generating Resources , Fossil Fuels , Carbon , China , Hot Temperature , Hydrogen , Metals , Minerals , Nitrogen , Rain , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...