Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Zhongguo Zhong Yao Za Zhi ; 47(17): 4551-4559, 2022 Sep.
Article in Chinese | MEDLINE | ID: mdl-36164859

ABSTRACT

Ischemic stroke is one of the main causes of death and long-term disability worldwide, which seriously affects the quality of life of patients and brings a heavy economic burden to families and society. Epidemiological studies have shown that stroke has become the second leading cause of death and major disabling disease in the world, with the characteristics of high morbidity, high recurrence, and high mortality. Epigenetic mechanism is the molecular process where gene expression and function in each cell are dynamically regulated and interconnected and a biological mechanism that changes genetic performance without changing the DNA sequence, including DNA methylation, histone modifications, and non-coding RNA. However, the research on epigenetics is currently focused on other diseases such as tumors. Recent studies have found that epigenetics has received extensive attention in the past few decades as a key factor involved in the pathophysiological process of ischemic stroke. The present study introduced the mediation of epigenetics in the induction of stroke, summarized the potential drug targets for these mechanisms in the treatment of stroke, and further explored the significance of traditional Chinese medicine(TCM) against cerebral ischemia injury based on TCM classification of stroke.


Subject(s)
Ischemic Stroke , Stroke , DNA Methylation , Epigenesis, Genetic , Humans , Ischemic Stroke/genetics , Quality of Life , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Stroke/genetics
2.
Front Cardiovasc Med ; 9: 818188, 2022.
Article in English | MEDLINE | ID: mdl-35330948

ABSTRACT

Cardiac fibrosis is a key pathological link of various cardiovascular diseases to heart failure. It is of great significance to deeply understand the development process of cardiac fibrosis and the cellular and molecular mechanisms involved. Macrophages play a special role in promoting heart development, maintaining myocardial cell homeostasis and heart function. They are involved in the whole process from inflammatory to cardiac fibrosis. This article summarizes the relationship between inflammation and fibrosis, discusses the bidirectional regulation of cardiac fibrosis by macrophages and analyses the functional heterogeneity of macrophages from different sources. It is believed that CCR2- cardiac resident macrophages can promote cardiac function, but the recruitment and infiltration of CCR2+ cardiac non-resident macrophages aggravate cardiac dysfunction and heart remodeling. After heart injury, damage associated molecular patterns (DAMPs) are released in large quantities, and the inflammatory signal mediated by macrophage chemoattractant protein-1 (MCP-1) promotes the infiltration of CCR2+ monocytes and transforms into macrophages in the heart. These CCR2+ non-resident macrophages not only replace part of the CCR2- resident macrophage subpopulation in the heart, but also cause cardiac homeostasis and hypofunction, and release a large number of mediators that promote fibroblast activation to cause cardiac fibrosis. This article reveals the cell biology mechanism of resident and non-resident macrophages in regulating cardiac fibrosis. It is believed that inhibiting the infiltration of cardiac non-resident macrophages and promoting the proliferation and activation of cardiac resident macrophages are the key to improving cardiac fibrosis and improving cardiac function.

SELECTION OF CITATIONS
SEARCH DETAIL
...