Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Life Sci ; 348: 122691, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38714265

ABSTRACT

CXCL3 (C-X-C Motif Chemokine 3), a member of the C-X-C chemokine subfamily, operates as a potent chemoattractant for neutrophils, thereby orchestrating the recruitment and migration of leukocytes alongside eliciting an inflammatory response. Recent inquiries have shed light on the pivotal roles of CXCL3 in the context of carcinogenesis. In the tumor microenvironment, CXCL3 emanating from both tumor and stromal cells intricately modulates cellular behaviors through autocrine and paracrine actions, primarily via interaction with its receptor CXCR2. Activation of signaling cascades such as ERK/MAPK, AKT, and JAK2/STAT3 underscores CXCL3's propensity to favor tumorigenic processes. However, CXCL3 exhibits dualistic behaviors, as evidenced by its capacity to exert anti-tumor effects under specific conditions. Additionally, the involvement of CXCL3 extends to inflammatory disorders like eclampsia, obesity, and asthma. This review encapsulates the structural attributes, biological functionalities, and molecular underpinnings of CXCL3 across both tumorigenesis and inflammatory diseases.


Subject(s)
Chemokines, CXC , Inflammation , Tumor Microenvironment , Humans , Inflammation/metabolism , Animals , Chemokines, CXC/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Signal Transduction , Carcinogenesis/metabolism
2.
Article in English | MEDLINE | ID: mdl-38415967

ABSTRACT

An integrated and projected-based laboratory course was described, integrating interconnected knowledge points and biochemistry and molecular biology techniques on a research project-based system. The program, which served as an essential extension of theoretical courses to practice, was conducted with a sophomore of basic medical science who had completed the course in medical biochemistry and molecular biology. This course engaged students in learning "genetic manipulation" and "recombinant DNA technology" to understand the target gene's role in disease mechanics, thus altering evaluation and treatment for clinical disease. Students could master applied and advanced techniques, such as cell culture, transfection, inducing exogenous fusion protein expression, purifying protein and its concentration assay, quantitative polymerase chain reaction, and western bot analysis. This laboratory exercise links laboratory practices with the methods of current basic research. Students need to complete the experimental design report and laboratory report, which could be advantageous for improving their ability to write lab summaries and scientific papers in the future. The reliability and validity analyses were conducted on the questionnaire, and we examined students' satisfaction with the course and their gains from the course. The student feedback was generally positive, indicating that the exercise helped consolidate theoretical knowledge, increase scientific research enthusiasm, and provide a powerful tool to be a better person and make informed decisions.

3.
Neural Regen Res ; 19(9): 2010-2018, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38227530

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202409000-00033/figure1/v/2024-01-16T170235Z/r/image-tiff We previously reported that miR-124-3p is markedly upregulated in microglia-derived exosomes following repetitive mild traumatic brain injury. However, its impact on neuronal endoplasmic reticulum stress following repetitive mild traumatic brain injury remains unclear. In this study, we first used an HT22 scratch injury model to mimic traumatic brain injury, then co-cultured the HT22 cells with BV2 microglia expressing high levels of miR-124-3p. We found that exosomes containing high levels of miR-124-3p attenuated apoptosis and endoplasmic reticulum stress. Furthermore, luciferase reporter assay analysis confirmed that miR-124-3p bound specifically to the endoplasmic reticulum stress-related protein IRE1α, while an IRE1α functional salvage experiment confirmed that miR-124-3p targeted IRE1α and reduced its expression, thereby inhibiting endoplasmic reticulum stress in injured neurons. Finally, we delivered microglia-derived exosomes containing miR-124-3p intranasally to a mouse model of repetitive mild traumatic brain injury and found that endoplasmic reticulum stress and apoptosis levels in hippocampal neurons were significantly reduced. These findings suggest that, after repetitive mild traumatic brain injury, miR-124-3 can be transferred from microglia-derived exosomes to injured neurons, where it exerts a neuroprotective effect by inhibiting endoplasmic reticulum stress. Therefore, microglia-derived exosomes containing miR-124-3p may represent a novel therapeutic strategy for repetitive mild traumatic brain injury.

4.
Life Sci ; 336: 122314, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38030057

ABSTRACT

Nucleus accumbens-associated protein 1 (NACC1) is a member of the broad complex, tramtrack, bric-a-brac/poxvirus and zinc finger (BTB/POZ) protein families, mainly exerting its biological functions as a transcription co-regulator. NACC1 forms homo- or hetero-dimers through the BTB/POZ or BANP, E5R, and NACC1 (BEN) domain with other transcriptional regulators to regulate downstream signals. Recently, the overexpression of NACC1 has been observed in various tumors and is positively associated with tumor progression, high recurrence rate, indicating poor prognosis. NACC1 also regulates biological processes such as embryonic development, stem cell pluripotency, innate immunity, and related diseases. Our review combines recent research to summarize advancements in the structure, biological functions, and relative molecular mechanisms of NACC1. The future development of NACC1 clinical appliances is also discussed.


Subject(s)
Neoplasm Proteins , Neoplasms , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Neoplasm Proteins/immunology , Neoplasms/genetics , Neoplasms/immunology , Nervous System Diseases/genetics , Nervous System Diseases/immunology , Gene Expression , Humans
5.
Life Sci ; 331: 122070, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37673296

ABSTRACT

Tumor cells are required to undergo metabolic reprogramming for rapid development and progression, and one of the metabolic characteristics of cancer cells is the excessive synthesis and utilization of nucleotides. Abnormally increased nucleotides and their metabolites not only directly accelerate tumor cell progression but also indirectly act on stromal cells in the tumor microenvironment (TME) via a paracrine manner to regulate tumor progression. Purine nucleotides are mainly produced via de novo nucleotide synthesis in tumor cells; therefore, intervening in their synthesis has emerged as a promising strategy in anti-tumor therapy. De novo purine synthesis is a 10-step reaction catalyzed by six enzymes to synthesize inosine 5-monophosphate (IMP) and subsequently synthesize AMP and GMP. Phosphoribosylaminoimidazole carboxylase/phosphori-bosylaminoimidazole succinocarboxamide synthetase (PAICS) is a bifunctional enzyme that catalyzes de novo purine synthesis. Aberrantly elevated PAICS expression in various tumors is associated with poor prognosis. Evidence suggests that PAICS and its catalytic product, N-succinylcarboxamide-5-aminoimidazole ribonucleotide (SAICAR), could inhibit tumor cell apoptosis and promote the growth, epithelial-mesenchymal transition (EMT), invasion, and metastasis by regulating signaling pathways such as pyruvate kinase M2 (PKM2), extracellular signal-related kinases 1 and 2 (ERK1/2), focal adhesion kinase (FAK) and so on. This review summarizes the structure, biological functions and the molecular mechanisms of PAICS in cancer development and discusses its potential to be a target for tumor therapy.


Subject(s)
Neoplasms , Humans , Neoplasms/drug therapy , Purines , Nucleotides , Apoptosis , Catalysis , Tumor Microenvironment
7.
Biol Direct ; 18(1): 29, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37312196

ABSTRACT

Intermittent hypoxia is the best predictor of developing cognitive decline and Alzheimer's disease progression in patients with obstructive sleep apnea. The nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome has been poorly studied as a regulator of neuroinflammation in cognitive impairment caused by intermittent hypoxia. As critical inflammatory cells, exosomes secreted by microglia have been found to affect the spread of pathologic proteins and neuropathology in neurodegenerative diseases. However, the effects of microglial exosomes on neuroinflammation and cognitive outcomes after intermittent hypoxia remain unclear. In this study, the role of miRNAs in microglial exosomes in improving cognitive deficits in mice exposed to intermittent hypoxia was investigated. We demonstrated that miR-146a-5p fluctuated over time in microglial exosomes of mice exposed to intermittent hypoxia for different periods of time, which could regulate neuronal NLRP3 inflammasome and neuroinflammation. In primary neurons, we found that miR-146a-5p regulated mitochondrial reactive oxygen species by targeting HIF1α, thus affecting the NLRP3 inflammasome and secretion of inflammatory factors. Similarly, further studies showed that inhibition of NLRP3 by administering overexpressed miR-146a-5p in microglial exosomes and MCC950 has improved neuroinflammation and cognitive dysfunction in mice after intermittent hypoxia. In conclusion, NLRP3 inflammasome may be a regulatory target for ameliorating cognitive impairment caused by intermittent hypoxia, and microglial exosomal miR-146a-5p may be a promising therapeutic strategy.


Subject(s)
Cognitive Dysfunction , Exosomes , MicroRNAs , Animals , Mice , Inflammasomes , Microglia , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Neuroinflammatory Diseases , Cognitive Dysfunction/etiology , Hypoxia , MicroRNAs/genetics , Cognition
8.
Brain Sci ; 13(4)2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37190604

ABSTRACT

Neural inflammatory response is a crucial pathological change in intracerebral hemorrhage (ICH) which accelerates the formation of perihematomal edema and aggravates neural cell death. Although surgical and drug treatments for ICH have advanced rapidly in recent years, therapeutic strategies that target and control neuroinflammation are still limited. Exosomes are important carriers for information transfer among cells. They have also been regarded as a promising therapeutic tool in translational medicine, with low immunogenicity, high penetration through the blood-brain barrier, and ease of modification. In our previous research, we have found that exogenous administration of miRNA-124-overexpressed microglial exosomes (Exo-124) are effective in improving post-injury cognitive impairment. From this, we evaluated the potential therapeutic effects of miRNA-124-enriched microglial exosomes on the ICH mice in the present study. We found that the gene-edited exosomes could attenuate neuro-deficits and brain edema, improve blood-brain barrier integrity, and reduce neural cell death. Moreover, the protective effect of Exo-124 was abolished in mice depleted of Gr-1+ myeloid cells. It suggested that the exosomes exerted their functions by limiting the infiltration of leukocyte into the brain, thus controlling neuroinflammation following the onset of ICH. In conclusion, our findings provided a promising therapeutic strategy for improving neuroinflammation in ICH. It also opens a new avenue for intranasal delivery of exosome therapy using miRNA-edited microglial exosomes.

9.
J Mol Cell Biol ; 15(4)2023 08 03.
Article in English | MEDLINE | ID: mdl-37073091

ABSTRACT

Recent studies have demonstrated that cancer-associated adipocytes (CAAs) in the tumor microenvironment are involved in the malignant progression of breast cancer. However, the underlying mechanism of CAA formation and its effects on the development of breast cancer are still unknown. Here, we show that CSF2 is highly expressed in both CAAs and breast cancer cells. CSF2 promotes inflammatory phenotypic changes of adipocytes through the Stat3 signaling pathway, leading to the secretion of multiple cytokines and proteases, particularly C-X-C motif chemokine ligand 3 (CXCL3). Adipocyte-derived CXCL3 binds to its specific receptor CXCR2 on breast cancer cells and activates the FAK pathway, enhancing the mesenchymal phenotype, migration, and invasion of breast cancer cells. In addition, a combination treatment targeting CSF2 and CXCR2 shows a synergistic inhibitory effect on adipocyte-induced lung metastasis of mouse 4T1 cells in vivo. These findings elucidate a novel mechanism of breast cancer metastasis and provide a potential therapeutic strategy for breast cancer metastasis.


Subject(s)
Adipocytes , Signal Transduction , Animals , Mice , Cell Line, Tumor , Phenotype , Adipocytes/metabolism , Neoplasm Metastasis , Cell Movement , Tumor Microenvironment
10.
Pathol Res Pract ; 238: 154104, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36095918

ABSTRACT

Aberrant expression of Neuromedin B (NMB) is associated with the malignant progression of cancer, such as breast cancer, lung cancer and glioma. However, the role of NMB in cervical cancer remains unclear. The present study found that NMB and its receptor NMBR are aberrantly expressed in cervical cancer. NMB activates ERK1/2 and NF-κB signaling pathways, which promote the proliferation of cervical cancer cells and increase the expression of tumor necrosis factor α (TNF-α). The downregulation of NMBR by the specific inhibitor, PD168368, abrogates proliferation and promotes apoptosis of cervical cancer cells. In addition, the NMB/NMBR signaling axis mediates the promoting effect of cancer-associated adipocytes on cervical cancer progression. These findings demonstrate the potential role of NMB/NMBR-regulated ERK1/2 and p65 signaling pathway in cervical cancer progression, which provide new opportunities to diagnose and treat cervical cancer.

11.
Front Aging Neurosci ; 14: 944283, 2022.
Article in English | MEDLINE | ID: mdl-36062143

ABSTRACT

Although there are still no satisfactory answers to the question of why we need to sleep, a better understanding of its function will help to improve societal attitudes toward sleep. Sleep disorders are very common in neurodegenerative diseases and are a key factor in the quality of life of patients and their families. Alzheimer's disease (AD) is an insidious and irreversible neurodegenerative disease. Along with progressive cognitive impairment, sleep disorders and disturbances in circadian rhythms play a key role in the progression of AD. Sleep and circadian rhythm disturbances are more common in patients with AD than in the general population and can appear early in the course of the disease. Therefore, this review discusses the bidirectional relationships among circadian rhythm disturbances, sleep disorders, and AD. In addition, pharmacological and non-pharmacological treatment options for patients with AD and sleep disorders are outlined.

12.
Cancers (Basel) ; 14(12)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35740622

ABSTRACT

Cachexia is a chronic metabolic syndrome that is characterized by sustained weight and muscle mass loss and anorexia. Cachexia can be secondary to a variety of diseases and affects the prognosis of patients significantly. The increase in inflammatory cytokines in plasma is deeply related to the occurrence of cachexia. As a member of the IL-6 cytokine family, leukemia inhibitory factor (LIF) exerts multiple biological functions. LIF is over-expressed in the cancer cells and stromal cells of various tumors, promoting the malignant development of tumors via the autocrine and paracrine systems. Intriguingly, increasing studies have confirmed that LIF contributes to the progression of cachexia, especially in patients with metastatic tumors. This review combines all of the evidence to summarize the mechanism of LIF-induced cachexia from the following four aspects: (i) LIF and cancer-associated cachexia, (ii) LIF and alterations of adipose tissue in cachexia, (iii) LIF and anorexia nervosa in cachexia, and (iv) LIF and muscle atrophy in cachexia. Considering the complex mechanisms in cachexia, we also focus on the interactions between LIF and other key cytokines in cachexia and existing therapeutics targeting LIF.

13.
Int J Biol Sci ; 18(4): 1363-1380, 2022.
Article in English | MEDLINE | ID: mdl-35280694

ABSTRACT

Cancer-associated adipocytes (CAAs), which are adipocytes transformed by cancer cells, are of great importance in promoting the progression of breast cancer. However, the underlying mechanisms involved in the crosstalk between cancer cells and adipocytes are still unknown. Here we report that CAAs and breast cancer cells communicate with each other by secreting the cytokines leukemia inhibitory factor (LIF) and C-X-C subfamily chemokines (CXCLs), respectively. LIF is a pro-inflammatory cytokine secreted by CAAs, which promotes migration and invasion of breast cancer cells via the Stat3 signaling pathway. The activation of Stat3 induced the secretion of glutamic acid-leucine-arginine (ELR) motif CXCLs (CXCL1, CXCL2, CXCL3 and CXCL8) in tumor cells. Interestingly, CXCLs in turn activated the ERK1/2/NF-κB/Stat3 signaling cascade to promote the expression of LIF in CAAs. In clinical breast cancer pathology samples, the up-regulation of LIF in paracancerous adipose tissue was positively correlated with the activation of Stat3 in breast cancer. Furthermore, we verified that adipocytes enhanced lung metastasis of breast cancer cells, and the combination of EC330 (targeting LIF) and SB225002 (targeting C-X-C motility chemokine receptor 2 (CXCR2)) significantly reduced lung metastasis of breast cancer cells in vivo. Our findings reveal that the interaction of adipocytes with breast cancer cells depends on a positive feedback loop between the cytokines LIF and CXCLs, which promotes breast cancer invasion and metastasis.


Subject(s)
Breast Neoplasms , Lung Neoplasms , Adipocytes/metabolism , Breast Neoplasms/metabolism , Feedback , Female , Humans , Leukemia Inhibitory Factor/genetics , Leukemia Inhibitory Factor/metabolism , Lung Neoplasms/metabolism
14.
Front Neurosci ; 16: 816752, 2022.
Article in English | MEDLINE | ID: mdl-35310096

ABSTRACT

Sleep deprivation (SD) induces systemic inflammation that promotes neuronal pyroptosis. The purpose of this study was to investigate the effect of an antioxidant modafinil on neuronal pyroptosis and cognitive decline following SD. Using a mouse model of SD, we found that modafinil improved learning and memory, reduced proinflammatory factor (IL-1ß, TNF-α, and IL-6) production, and increased the expression of anti-inflammatory factors (IL-10). Modafinil treatment attenuated inflammasome activity and reduced neuronal pyroptosis involving the NLRP3/NLRP1/NLRC4-caspase-1-IL-1ß pathway. In addition, modafinil induced an upregulation of brain-derived neurotrophic factor (BDNF) and synaptic activity. These results suggest that modafinil reduces neuronal pyroptosis and cognitive decline following SD. These effects should be further investigated in future studies to benefit patients with sleep disorders.

15.
Front Cell Neurosci ; 16: 832140, 2022.
Article in English | MEDLINE | ID: mdl-35153676

ABSTRACT

BACKGROUND: Repetitive mild traumatic brain injury (rmTBI) is closely associated with chronic traumatic encephalopathy (CTE). Neuroinflammation and neuropathological protein accumulation are key links to CTE progression. Exosomes play important roles in neuroinflammation and neuropathological protein accumulation and spread. Here, we explored the role of brain-derived exosomes (BDEs) in mice with rmTBI and how the inhibition of BDE release contributes to neuroprotection. METHODS: GW4869 was used to inhibit exosome release, and behavioural tests, PET/CT and western blotting were conducted to explore the impact of this inhibition from different perspectives. We further evaluated cytokine expression by Luminex and microglial activation by immunofluorescence in mice with rmTBI after exosome release inhibition. RESULTS: Inhibition of BDE release reversed cognitive impairment in mice with rmTBI, enhanced glucose uptake and decreased neuropathological protein expression. Inhibition of BDE release also changed cytokine production trends and enhanced microglial proliferation. CONCLUSION: In this study, we found that BDEs are key factor in cognitive impairment in mice with rmTBI and that microglia are the main target of BDEs. Thus, inhibition of exosome release may be a new strategy for improving CTE prognoses.

16.
Mol Med Rep ; 24(5)2021 11.
Article in English | MEDLINE | ID: mdl-34490479

ABSTRACT

Adipocytes are the main stromal cells in the tumor microenvironment. In addition to serving as energy stores for triglycerides, adipocytes may function as an active endocrine organ. The crosstalk between adipocytes and cancer cells was shown to promote the migration, invasion and proliferation of cancer cells and to cause phenotypic and functional changes in adipocytes. Tumor­derived soluble factors, such as TNF­α, plasminogen activator inhibitor 1, Wnt3a, IL­6, and exosomal microRNAs (miRNA/miRs), including miR­144, miR­126, miR­155, as well as other miRNAs, have been shown to act on adipocytes at the tumor invasion front, resulting in the formation of cancer­associated adipocytes (CAAs) with diminished reduced terminal differentiation markers and a dedifferentiated phenotype. In addition, the number and size of CAA lipid droplets have been found to be significantly reduced compared with those of mature adipocytes, whereas inflammatory cytokines and proteases are overexpressed. The aim of the present review was to summarize the latest findings on the biological changes of CAAs and the potential role of tumor­adipocyte crosstalk in the formation of CAAs, in the hope of providing novel perspectives for breast cancer treatment.


Subject(s)
Adipocytes , Breast Neoplasms , Tumor Microenvironment , Adipocytes/metabolism , Adipocytes/pathology , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans
17.
Metab Brain Dis ; 36(7): 2079-2088, 2021 10.
Article in English | MEDLINE | ID: mdl-34269982

ABSTRACT

Insulin-like growth factor-1 (IGF-1) improves obesity-induced cognitive dysfunction, but its mechanism is not fully clarified. The aim of the study was to reveal whether IGF-1 treated cognitive dysfunction by improving tau pathology and neuronal pyroptosis in high-fat diet mice. During in vitro experiment, C57BL/6J mice were fed with high-fat diet, and were treated with PEG-IGF-1, IGF-1 receptor blocker AXL1717, HO-1 blocker Znpp IX or their combinations. Cognitive function was evaluated using Morris water maze. Expression of Nrf2, HO-1, p-tau, NLRP3, caspase-1 and IL-1ß in hippocampus was determined using western blotting. Pyroptosis rate in hippocampus was measured using flow cytometry. During in vivo experiment, HN-h cells were treated with palmitic acid, pyroptosis blocker nonecrosulfonamide or their combinations. The expression of the proteins and rate of pyroptosis were also measured using western blotting and flow cytometry. During in vitro experiment, high-fat diet mice showed cognitive dysfunction, significant hyperphosphorylation of tau protein and neuronal pyroptosis in hippocampus compared with the sham mice. After exogenous IGF-1 treatment, these abnormalities were reversed and Nrf2/HO-1 signaling pathway was activated. Inhibition of the signaling pathway using AXL1717 or Znpp IX re-deteriorated cognitive function, tau pathology and neuronal pyroptosis in hippocampus. During in vivo experiment, inhibition of pyroptosis using nonecrosulfonamide improved tau pathology in palmitic acid-treated HN-h cells. Exogenous IGF-1 improved tau pathology induced by high-fat diet through inhibition of neuronal pyroptosis and activation of Nrf2/HO-1 signaling pathway.


Subject(s)
Cognitive Dysfunction , Pyroptosis , Animals , Cognitive Dysfunction/drug therapy , Diet, High-Fat/adverse effects , Insulin-Like Growth Factor I/metabolism , Mice , Mice, Inbred C57BL , tau Proteins
18.
Biochem Mol Biol Educ ; 49(5): 720-728, 2021 09.
Article in English | MEDLINE | ID: mdl-34111317

ABSTRACT

The COVID-19 pandemic is a huge challenge to education systems. Most governments around the world have temporarily closed schools, universities, and colleges. At the same time, teachers and students are encouraged to use the online and distance learning programs and platforms as an alternative. In the present study, we proposed a series of innovative solutions in Medical Molecular Biology education during the COVID-19 pandemic in China, including a flipped classroom model, live streaming course, chat Apps, and scientific papers on COVID-19 as additional learning material. Our results demonstrated that these innovations not only help teachers to maintain the teaching process as usual but also be useful for protecting students from psychological trauma. Our study indicates that online education with a well-designed workflow for conducting provides an alternative approach for teachers to maintain quality education during the onset of the emerging crisis.


Subject(s)
COVID-19/epidemiology , Curriculum , Education, Distance , Education, Medical , Mobile Applications , Molecular Biology/education , Pandemics , SARS-CoV-2 , China/epidemiology , Humans
19.
J Mol Neurosci ; 71(11): 2299-2309, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33484421

ABSTRACT

Pyroptosis is a programmed cell death process which is accompanied by inflammation. The aims of this in vitro and in vivo study were to reveal whether miR-129 contributed to neuronal pyroptosis and cognitive impairment and to further explore its mechanism involved. PC-12 cells were treated with LPS, miR-129 antagomir, AXL1717 (IGF-1 receptor blocker), or SB216763 (GSK3ß blocker). After that, expression of miR-129 was measured using qRT-PCR. Relationship between miR-129 and IGF-1 was revealed using luciferase reporter assay. Protein expression of IGF-1, p-Ser9-GSK3ß, NLRP3, and Caspase-1 was determined using western blotting. Pyroptosis rate was measured using flow cytometry. Wistar rats were fed with high-fat diet to induce neural inflammation and were further treated with miR-129 antagomir through intracerebroventricular injection. Then, cognitive impairment was assessed by water maze test. Expression of the proteins mentioned above was measured again in midbrain and hippocampus of the rats. In the PC-12 cells, LPS-induced neuronal pyroptosis can be alleviated by miR-129 antagomir. IGF-1 was a specific target for miR-129. Up-regulation and down-regulation of IGF-1/GSK3ß signaling pathway separately alleviated and deteriorated neuronal pyroptosis in the cells. In the rats, high-fat diet caused cognitive impairment following with neuronal pyroptosis and down-regulation of IGF-1/GSK3ß signaling pathway in midbrain and hippocampus tissues. Also, miR-129 antagomir improved these abnormalities in the rats. Inhibition of miR-129 improved neuronal pyroptosis and cognitive impairment through IGF-1/GSK3ß signaling pathway.


Subject(s)
Cognitive Dysfunction/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Insulin-Like Growth Factor I/metabolism , MicroRNAs/genetics , Neurons/metabolism , Pyroptosis , Animals , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Insulin-Like Growth Factor I/antagonists & inhibitors , Lipopolysaccharides/toxicity , Male , MicroRNAs/metabolism , PC12 Cells , Rats , Rats, Wistar , Signal Transduction
20.
J Mol Neurosci ; 71(6): 1320-1328, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33403593

ABSTRACT

Inflammation contributes to mitochondrial dysfunction and neuronal apoptosis. The aim of this study was to determine whether insulin-like growth factor-1 (IGF-1) alleviates mitochondrial apoptosis in lipopolysaccharide (LPS)-treated PC-12 cells, and to further explore the mechanism involved. Prepared PC-12 cells were treated with IGF-1, Mdivi-1 (DRP1 blocker), LY294002 (PI3K blocker), betulinic acid (NF-κB activator) or their combinations. Mitochondrial membrane potential and ATP generation were then measured to assess mitochondrial function. The rate of apoptosis was determined using flow cytometry. The expression of several apoptosis proteins (i.e. Bax, cleaved caspase-9 and cleaved caspase-3) and signaling proteins (i.e. p-GSK3ß, NF-κB and NLRP3) was measured using western blotting. Compared with the control cells, the LPS-treated cells showed evidence of mitochondrial dysfunction, increased apoptosis and upregulation of apoptosis proteins, which were significantly alleviated by Mdivi-1. These findings indicate that neuronal apoptosis was activated partly through the mitochondrial pathway. IGF-1 treatment inhibited mitochondrial apoptosis in a dose-dependent manner in the LPS-treated cells. The reagent also increased the expression of p-GSK3ß and decreased the expression of NF-κB and NLRP3. Both LY294002 and betulinic acid reversed the protective effect of IGF-1. In addition, LY294002 affected the expression of the three signaling proteins, while betulinic acid only affected the expression of NF-κB and NLRP3. These findings indicated a GSK3ß/NF-κB/NLRP3 signaling pathway was existed and was involved in the protective mechanism of IGF-1. In conclusion, IGF-1 alleviated mitochondrial apoptosis through GSK3ß/NF-κB/NLRP3 signaling pathway in LPS-treated PC-12 cells.


Subject(s)
Apoptosis , Insulin-Like Growth Factor I/pharmacology , Mitochondria/drug effects , Neuroprotective Agents/pharmacology , Signal Transduction , Animals , Glycogen Synthase Kinase 3 beta/metabolism , Lipopolysaccharides/toxicity , Mitochondria/metabolism , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , PC12 Cells , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...