Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; : e2403583, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743929

ABSTRACT

2D Janus Transition Metal Dichalcogenides (TMDs) have attracted much interest due to their exciting quantum properties arising from their unique two-faced structure, broken-mirror symmetry, and consequent colossal polarization field within the monolayer. While efforts are made to achieve high-quality Janus monolayers, the existing methods rely on highly energetic processes that introduce unwanted grain-boundary and point defects with still unexplored effects on the material's structural and excitonic properties Through high-resolution scanning transmission electron microscopy (HRSTEM), density functional theory (DFT), and optical spectroscopy measurements; this work introduces the most encountered and energetically stable point defects. It establishes their impact on the material's optical properties. HRSTEM studies show that the most energetically stable point defects are single (VS and VSe) and double chalcogen vacancy (VS -VSe), interstitial defects (Mi), and metal impurities (MW) and establish their structural characteristics. DFT further establishes their formation energies and related localized bands within the forbidden band. Cryogenic excitonic studies on h-BN-encapsulated Janus monolayers offer a clear correlation between these structural defects and observed emission features, which closely align with the results of the theory. The overall results introduce the defect genome of Janus TMDs as an essential guideline for assessing their structural quality and device properties.

2.
Nat Commun ; 15(1): 3556, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670956

ABSTRACT

Point defects in two-dimensional materials are of key interest for quantum information science. However, the parameter space of possible defects is immense, making the identification of high-performance quantum defects very challenging. Here, we perform high-throughput (HT) first-principles computational screening to search for promising quantum defects within WS2, which present localized levels in the band gap that can lead to bright optical transitions in the visible or telecom regime. Our computed database spans more than 700 charged defects formed through substitution on the tungsten or sulfur site. We found that sulfur substitutions enable the most promising quantum defects. We computationally identify the neutral cobalt substitution to sulfur (Co S 0 ) and fabricate it with scanning tunneling microscopy (STM). The Co S 0 electronic structure measured by STM agrees with first principles and showcases an attractive quantum defect. Our work shows how HT computational screening and nanoscale synthesis routes can be combined to design promising quantum defects.

3.
Sci Adv ; 9(40): eadh8617, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37792930

ABSTRACT

Color centers in host semiconductors are prime candidates as spin-photon interfaces for quantum applications. Finding an optimal spin-photon interface in silicon would move quantum information technologies toward a mature semiconducting host. However, the space of possible charged defects is vast, making the identification of candidates from experiments alone extremely challenging. Here, we use high-throughput first-principles computational screening to identify spin-photon interfaces among more than 1000 charged defects in silicon. The use of a single-shot hybrid functional approach is critical in enabling the screening of many quantum defects with a reasonable accuracy. We identify three promising spin-photon interfaces as potential bright emitters in the telecom band: [Formula: see text], [Formula: see text], and [Formula: see text]. These candidates are excited through defect-bound excitons, stressing the importance of such defects in silicon for telecom band operations. Our work paves the way to further large-scale computational screening for quantum defects in semiconductors.

4.
Nat Commun ; 14(1): 5769, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37723139

ABSTRACT

There is tremendous interest in employing collective excitations of the lattice, spin, charge, and orbitals to tune strongly correlated electronic phenomena. We report such an effect in a ruthenate, Ca3Ru2O7, where two phonons with strong electron-phonon coupling modulate the electronic pseudogap as well as mediate charge and spin density wave fluctuations. Combining temperature-dependent Raman spectroscopy with density functional theory reveals two phonons, B2P and B2M, that are strongly coupled to electrons and whose scattering intensities respectively dominate in the pseudogap versus the metallic phases. The B2P squeezes the octahedra along the out of plane c-axis, while the B2M elongates it, thus modulating the Ru 4d orbital splitting and the bandwidth of the in-plane electron hopping; Thus, B2P opens the pseudogap, while B2M closes it. Moreover, the B2 phonons mediate incoherent charge and spin density wave fluctuations, as evidenced by changes in the background electronic Raman scattering that exhibit unique symmetry signatures. The polar order breaks inversion symmetry, enabling infrared activity of these phonons, paving the way for coherent light-driven control of electronic transport.

5.
Phys Chem Chem Phys ; 23(11): 6880-6887, 2021 Mar 21.
Article in English | MEDLINE | ID: mdl-33725039

ABSTRACT

Tuning the work functions of materials is of practical interest for maximizing the performance of microelectronic and (photo)electrochemical devices, as the efficiency of these systems depends on the ability to control electronic levels at surfaces and across interfaces. Perovskites are promising compounds to achieve such control. In this work, we examine the work functions of more than 1000 perovskite oxide surfaces (ABO3) using data-driven (machine-learning) analysis and identify the factors that determine their magnitude. While the work functions of the BO2-terminated surfaces are sensitive to the energy of the hybridized oxygen p bands, the work functions of the AO-terminated surfaces exhibit a much less trivial dependence with respect to the filling of the d bands of the B-site atom and of its electronic affinity. This study shows the utility of interpretable data-driven models in analyzing the work functions of cubic perovskites from a limited number of electronic-structure descriptors.

6.
Inorg Chem ; 59(16): 11688-11694, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32799504

ABSTRACT

All-inorganic metal halide perovskite-related phases are semiconducting materials that are of significant interest for a wide range of applications. Nanoparticles of these materials are particularly useful because they permit solution processing while offering unique and tunable properties. Of the many metal halide systems that have been studied extensively, cesium cadmium chlorides remain underexplored, and synthetic routes to access them as nanoscale materials have not been established. Here we demonstrate that a simple solution-phase reaction involving the injection of a cesium oleate solution into a cadmium chloride solution produces three distinct cesium cadmium chlorides: hexagonal CsCdCl3 and the Ruddlesden-Popper layered perovskites Cs2CdCl4 and Cs3Cd2Cl7. The phase-selective synthesis emerges from differences in reagent concentrations, temperature, and injection rates. A key variable is the rate at which the cesium oleate solution is injected into the cadmium chloride solution, which is believed to influence the local Cs:Cd concentration during precipitation, leading to control over the phase that forms. Band structure calculations indicate that hexagonal CsCdCl3 is a direct band gap semiconductor while Cs2CdCl4 and Cs3Cd2Cl7 have indirect band gaps. The experimentally determined band gap values for CsCdCl3, Cs2CdCl4, and Cs3Cd2Cl7 are 5.13, 4.91, and 4.70 eV, respectively, which places them in a rare category of ultrawide-band-gap semiconductors.

7.
Chem Commun (Camb) ; 56(26): 3793-3796, 2020 Apr 04.
Article in English | MEDLINE | ID: mdl-32129327

ABSTRACT

We report for the first time to our knowledge the identification of heteroatom-doped and undoped C3N4 with the energy-resolved distribution of electron traps (ERDT) near the conduction band bottom position (CBB) using reversed double-beam photoacoustic spectroscopy. The ERDT/CBB pattern is used to classify the type of elemental doping in C3N4, related to photocatalytic efficiency.

8.
J Hazard Mater ; 389: 121880, 2020 May 05.
Article in English | MEDLINE | ID: mdl-31843402

ABSTRACT

Low-level radioactive wastes are commonly immobilized in cementitious materials, where cement-based material can incorporate radionuclides into their crystal structure. Specifically, ettringite (Ca6Al2(OH)12(SO4)3∙26H2O) is known to stabilize anionic species, which is appealing for waste streams with radioactive iodine (129I) that persists as iodide (I-) and iodate (IO3-) in the cementitious nuclear waste repository. However, the structural information and immobilization mechanisms of iodine species in ettringite remain unclear. The present results suggested minimal I- incorporation into ettringite (0.05 %), whereas IO3- exhibited a high affinity for ettringite via anion substitution for SO42- (96 %). The combined iodine K-edge extended X-ray absorption fine structure (EXAFS) spectra and first-principles calculations using density functional theory (DFT) suggested that IO3- was stabilized in ettringite by hydrogen bonding and electrostatic forces. Substituting IO3- for SO42- was energetically favorable by -0.41 eV, whereas unfavorable substitution energy of 4.21 eV was observed for I- substitution. Moreover, the bonding charge density analysis of the substituted IO3- and I- anions into the ettringite structure revealed the interaction between intercalated ions with the structural water molecules. These results provided valuable insight into the long-term stabilization of anionic iodine species and their migration in cementitious nuclear waste repository or alkaline environments.

9.
Molecules ; 19(1): 1302-16, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24451250

ABSTRACT

The aryloxypyrazole structure is present in a number of bioactive molecules. Four 1,5-diaryl-3-oxypyrazoles containing benzoyl (I), thiazolidinethione (II and III) or per-O-acetylated glucopyranosyl (IV) moieties were characterized by single-crystal X-ray diffraction. Compounds I and II crystallize in a triclinic P-1 system, whereas III and IV crystallize in an orthorhombic Pbca and a monoclinic P21 space groups, respectively. The dihedral angles between the two benzene rings of the pyrazole are 61.33° (I), 62.87° (II), 57.09° (III) and 70.25° (IV). The structures were stabilized by classical intra- (C-H···S for II and III, C-H···O for IV) and intermolecular (C-H···O for I and IV) H-bonds, as well as intermolecular C-H···π stacking interactions. The theoretical FTIR results showed good agreement with the experimental data. Compounds IV, II and III showed moderate fungicidal activity against Sclerotinia sclerotiorum and Gibberella zeae. The structure-activity relationships were discussed.


Subject(s)
Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Pyrazoles/chemistry , Pyrazoles/pharmacology , Crystallography, X-Ray , Hydrogen Bonding , Microbial Sensitivity Tests , Molecular Structure , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...