Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(22): 25981-25992, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34039001

ABSTRACT

The Li-rich and Mn-based material xLi2MnO3·(1-x)LiMO2 (M = Ni, Co, and Mn) is regarded as one of the new generations of cathode materials for Li-ion batteries due to its high energy density, low cost, and less toxicity. However, there still exist some drawbacks such as its high initial irreversible capacity, capacity/voltage fading, poor rate capability, and so forth, which seriously limit its large-scale commercial applications. In this paper, the Ta-Mo codoped Li1.2Ni0.13Co0.13Mn0.54O2 with high energy density is prepared via a coprecipitation method, followed by a solid-state reaction. The synthetic mechanism and technology, the effect of charge-discharge methods, the bulk doping and the surface structure design on the structure, morphology, and electrochemical performances of the Li1.2Ni0.13Co0.13Mn0.54O2 cathode are systematically investigated. The results show that Ta5+ and Mo6+ mainly occupy the Li site and transition-metal site, respectively. Both the appropriate Ta and Ta-Mo doping are conductive to increase the Mn3+ concentration and suppress the generation of Li/Ni mixing and the oxygen defects. The Ta-Mo codoped cathode sample can deliver 243.2 mA h·g-1 at 1 C under 2.0-4.8 V, retaining 80% capacity retention after 240 cycles, and decay 1.584 mV per cycle in 250 cycles. The capacity retention can be still maintained to 80% after 410 cycles over 2.0-4.4 V, and the average voltage fading rate is 0.714 mV per cycle in 500 cycles. Compared with the pristine, the capacity and voltage fading of Ta-Mo codoped materials are effectively suppressed, which are mainly ascribed to the fact that the highly valence Ta5+ and Mo6+ that entered into the crystal lattice are favorable for maintaining the charge balance, and the strong bond energies of Ta-O and Mo-O can help to maintain the crystal structure and relieve the corrosion from the electrolyte during the charging/discharging process.

SELECTION OF CITATIONS
SEARCH DETAIL
...