Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
J Environ Sci (China) ; 104: 150-168, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33985718

ABSTRACT

Using a bottom-up estimation method, a comprehensive, high-resolution emission inventory of gaseous and particulate atmospheric pollutants for multiple anthropogenic sectors with typical local sources has been developed for the Harbin-Changchun city agglomeration (HCA). The annual emissions for CO, NOx, SO2, NH3, VOCS, PM2.5, PM10, BC and OC during 2017 in the HCA were estimated to be 5.82 Tg, 0.70 Tg, 0.34 Tg, 0.75 Tg, 0.81Tg, 0.67 Tg, 1.59 Tg, 0.12 Tg and 0.26 Tg, respectively. For PM10 and SO2, the emissions from industry processes were the dominant contributors representing 54.7% and 49.5%, respectively, of the total emissions, while 95.3% and 44.5% of the total NH3 and NOx emissions, respectively, were from or associated with agricultural activities and transportation. Spatiotemporal distributions showed that most emissions (except NH3) occurred in November to March and were concentrated in the central cities of Changchun and Harbin and the surrounding cities. Open burning of straw made an important contribution to PM2.5 in the central regions of the northeastern plain during autumn and spring, while domestic coal combustion for heating purposes was significant with respect to SO2 and PM2.5 emissions during autumn and winter. Furthermore, based on Principal Component Analysis and Multivariable Linear Regression model, air temperature, relative humidity, electricity and energy consumption, and the urban and rural population were optimized to be representative indicators for rapidly assessing the magnitude of regional atmospheric pollutants in the HCA. Such indicators and equations were demonstrated to be useful for local atmospheric environment management.


Subject(s)
Air Pollutants , Air Pollution , Environmental Pollutants , Air Pollutants/analysis , Air Pollution/analysis , China , Cities , Conservation of Natural Resources , Environmental Monitoring , Humans , Particulate Matter/analysis
2.
Sci Total Environ ; 716: 136517, 2020 May 10.
Article in English | MEDLINE | ID: mdl-32059315

ABSTRACT

Open filed biomass burning is a major contributor to airborne particulate matter and reactive trace gases during the post-harvest season in the Northeastern China. Due to prevailing weather conditions and high emission density, this region is prone to the accumulation of air pollutants that often leads to severe haze events. In this study, we combined satellite and ground observations, and a regional air quality modeling system to quantify the contribution of open biomass burning to surface PM2.5 (particulate matter with diameter less than 2.5 µm) concentrations during a severe haze episode. During this period (November 1st - 4th, 2015), the average PM2.5 concentrations in Heilongjiang, Jilin, and Liaoning provinces reached 116.98 µg/m3, 98.60 µg/m3, and 70.17 µg/m3 respectively. Model simulations showed that open biomass burning contributed to 52.7% of PM2.5 concentrations over Northeast China. Using the differences in active fire spots as detected by the Visible Infrared Imaging Radiometer Suites (VIIRS) aboard the Suomi-NPP, we estimated that the burning ban enforced in 2018 have caused the PM2.5 concentrations to decrease from the 2015 level by 67.10%, 53.23%, and 10.06% in the Heilongjiang, Jilin, and Liaoning provinces respectively. Over the region, the burning ban proved to be effective in reducing fire emissions and lowering region-wide PM2.5 concentration by 48.1% during the post-harvest season.


Subject(s)
Biomass , Air Pollutants , Air Pollution , China , Environmental Monitoring , Particulate Matter
3.
Huan Jing Ke Xue ; 40(11): 4810-4823, 2019 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-31854546

ABSTRACT

Northeastern China experiences severe atmospheric pollution, with an increasing occurrence of heavy haze episodes. Based on ground monitoring data, satellite products and meteorological products of atmospheric pollutants in northeast China from 2013 to 2017, the characteristics of spatial and temporal distribution of air quality and the causes of heavy haze events in northeast China were discussed. It was found that the "Shenyang-Changchun-Harbin" city belt was the most polluted area in the region on an annual scale. The spatial distribution of air quality index (AQI) values had a clear seasonality, with the worst pollution occurring in winter, an approximately oval-shaped polluted area around western Jilin Province in spring, and the best air quality occurring in summer and most of autumn. The three periods that typically experienced intense haze events were Period I from late-October to early-November (i. e., late autumn and early winter), Period Ⅱ from late-December to January (i. e., the coldest time in winter), and Period Ⅲ from April to mid-May (i. e., spring). During Period I, strong PM2.5 emissions from seasonal crop residue burning and coal burning for winter heating were the dominant reasons for the occurrence of extreme haze events (AQI>300). Period Ⅱ had frequent heavy haze events (200 < AQI < 300) in the coldest months of January and February(200 < AQI < 300), which were due to high PM2.5 emissions from coal burning and vehicle fuel consumption, a lower atmospheric boundary layer, and stagnant atmospheric conditions. Haze events in Period Ⅲ, with high PM10 concentrations, were primarily caused by the regional transportation of windblown dust from degraded grassland in central Inner Mongolia and bare soil in western Jilin Province. Local agricultural tilling could also release PM10 and enhance the levels of windblown dust from tilled soil.

4.
Environ Health Perspect ; 121(5): 558-64, 2013 May.
Article in English | MEDLINE | ID: mdl-23462649

ABSTRACT

BACKGROUND: This paper presents an application of quantitative ion character-activity relationships (QICAR) to estimate associations of human cardiovascular (CV) diseases (CVDs) with a set of metal ion properties commonly observed in ambient air pollutants. QICAR has previously been used to predict ecotoxicity of inorganic metal ions based on ion properties. OBJECTIVES: The objective of this work was to examine potential associations of biological end points with a set of physical and chemical properties describing inorganic metal ions present in exposures using QICAR. METHODS: Chemical and physical properties of 17 metal ions were obtained from peer-reviewed publications. Associations of cardiac arrhythmia, myocardial ischemia, myocardial infarction, stroke, and thrombosis with exposures to metal ions (measured as inference scores) were obtained from the Comparative Toxicogenomics Database (CTD). Robust regressions were applied to estimate the associations of CVDs with ion properties. RESULTS: CVD was statistically significantly associated (Bonferroni-adjusted significance level of 0.003) with many ion properties reflecting ion size, solubility, oxidation potential, and abilities to form covalent and ionic bonds. The properties are relevant for reactive oxygen species (ROS) generation, which has been identified as a possible mechanism leading to CVDs. CONCLUSION: QICAR has the potential to complement existing epidemiologic methods for estimating associations between CVDs and air pollutant exposures by providing clues about the underlying mechanisms that may explain these associations.


Subject(s)
Air Pollution/adverse effects , Cardiovascular Diseases/chemically induced , Metals/toxicity , Particulate Matter/toxicity , Humans , Least-Squares Analysis , Metals/chemistry , Particulate Matter/analysis , Reactive Oxygen Species/metabolism , Regression Analysis
5.
Environ Health ; 10: 49, 2011 May 24.
Article in English | MEDLINE | ID: mdl-21609456

ABSTRACT

BACKGROUND: Synoptic circulation patterns (large-scale tropospheric motion systems) affect air pollution and, potentially, air-pollution-morbidity associations. We evaluated the effect of synoptic circulation patterns (air masses) on the association between ozone and hospital admissions for asthma and myocardial infarction (MI) among adults in North Carolina. METHODS: Daily surface meteorology data (including precipitation, wind speed, and dew point) for five selected cities in North Carolina were obtained from the U.S. EPA Air Quality System (AQS), which were in turn based on data from the National Climatic Data Center of the National Oceanic and Atmospheric Administration. We used the Spatial Synoptic Classification system to classify each day of the 9-year period from 1996 through 2004 into one of seven different air mass types: dry polar, dry moderate, dry tropical, moist polar, moist moderate, moist tropical, or transitional. Daily 24-hour maximum 1-hour ambient concentrations of ozone were obtained from the AQS. Asthma and MI hospital admissions data for the 9-year period were obtained from the North Carolina Department of Health and Human Services. Generalized linear models were used to assess the association of the hospitalizations with ozone concentrations and specific air mass types, using pollutant lags of 0 to 5 days. We examined the effect across cities on days with the same air mass type. In all models we adjusted for dew point and day-of-the-week effects related to hospital admissions. RESULTS: Ozone was associated with asthma under dry tropical (1- to 5-day lags), transitional (3- and 4-day lags), and extreme moist tropical (0-day lag) air masses. Ozone was associated with MI only under the extreme moist tropical (5-day lag) air masses. CONCLUSIONS: Elevated ozone levels are associated with dry tropical, dry moderate, and moist tropical air masses, with the highest ozone levels being associated with the dry tropical air mass. Certain synoptic circulation patterns/air masses in conjunction with ambient ozone levels were associated with increased asthma and MI hospitalizations.


Subject(s)
Air Movements , Asthma/epidemiology , Myocardial Infarction/epidemiology , Ozone/adverse effects , Patient Admission/statistics & numerical data , Cities , Geographic Information Systems , Hospitalization/statistics & numerical data , Humans , North Carolina/epidemiology , Weather
SELECTION OF CITATIONS
SEARCH DETAIL
...