Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Huan Jing Ke Xue ; 45(6): 3671-3678, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897786

ABSTRACT

Microplastics (MPs) and antibiotic resistance genes (ARGs) are typical co-existing emerging pollutants in wastewater treatment plants. MPs have been shown to alter the distribution pattern of ARGs in sludge, but their effects on free extracellular ARGs (feARGs) in wastewater remain unclear. In this study, we used fluorescence quantitative PCR to investigate the dynamics of feARGs (including tetC, tetO, sul1, and sul2) in wastewater and their transition mechanisms after 60 d of exposure to typical MPs (polystyrene, PS). The results showed that the absolute abundance of tetracycline feARGs decreased by 28.4 %-76.0 % and 35.2 %-96.2 %, respectively, under nm-level and mm-level PS exposure and changed by -55.4 %-122.4 % under µm-level PS exposure. The abundance of sul1 showed a trend of nm-level > µm-level > mm-level upon PS exposure, and the changes in sul1 abundance was greater with ρ(PS)=50 mg·L-1 exposure. The relative abundance of sul2 was reduced by 25.4 %-42.6 % and 46.1 %-90.3 % after µm-level and mm-level PS exposure, respectively, and increased by 1.9-3.9 times after nm-level PS exposure, and the sul2 showed a higher reduction at ρ (PS)=50 mg·L-1 exposure than that at ρ (PS)=0.5 mg·L-1. The Pearson correlation analysis showed that the relative abundance of feARGs during PS exposure was positively correlated with cell membrane permeability and typical mobile genetic elements (intI1) abundance and negatively correlated with reactive oxygen species level. Our findings elucidated the effects and corresponding mechanisms of PS on the growth and mobility of feARGs in wastewater, providing a scientific basis for the control of the combined MPs and ARGs pollution in wastewater.


Subject(s)
Genes, Bacterial , Microplastics , Polystyrenes , Wastewater , Microplastics/toxicity , Drug Resistance, Microbial/genetics , Water Pollutants, Chemical/analysis , Waste Disposal, Fluid/methods
2.
Small ; : e2306557, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38063820

ABSTRACT

Ionogels are extremely soft ionic materials that can undergo large deformation while maintaining their structural and functional integrity. Ductile ionogels can absorb energy and resist fracture under external load, making them an ideal candidate for wearable electronics, soft robotics, and protective gear. However, developing high-modulus ionogels with extreme toughness remains challenging. Here, a facile one-step photopolymerization approach to construct an acrylic acid (AA)-2-hydroxyethylacrylate (HEA)-choline chloride (ChCl) eutectogel (AHCE) with ultrahigh modulus and toughness is reported. With rich hydrogen bonding crosslinks and phase segregation, this gel has a 99.1 MPa Young's modulus and a 70.6 MJ m-3 toughness along with 511.4% elongation, which can lift 12 000 times its weight. These features provide extreme damage resistance and electrical healing ability, offering it a protective and strain-sensitive coating to innovate anticutting fabric with motion detection for human healthcare. The work provides an effective strategy to construct robust ionogel materials and smart wearable electronics for intelligent life.

3.
J Asian Nat Prod Res ; 25(6): 528-539, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35920176

ABSTRACT

Twenty-two metabolites were isolated from Penicillium sp. CPCC 401423 cultured on rice. The structures of all compounds were elucidated mainly by MS and NMR analysis as well as the necessary CD experimental evidence, of which penicillidione A (1), penicillidione B (2), (E)-4-[(4-acetoxy-3-methyl-2-butenyl)oxy]phenylacetic acid (3), (S)-2-hydroxy-2-{4-[(3-methyl-2-butenyl)oxy]phenyl} (4), (S)-4-(2,3-dihydroxy-3-methyl-butoxy)phenylacetic acid (5), (E)-4-[(3-carboxy-2-butenyl)oxy]benzoic acid (6), (Z)-4-[(4-hydroxy-3-methyl-2-butenyl)oxy]benzoic acid (7), open-cycled N-demethylmelearoride A (12), and penostatin M (16) were identified as new compounds. The cytotoxic activity against human pancreatic carcinoma cell line MIA PaCa-2a was detected. Among them, compounds 13-15 and 22 displayed significant cytotoxicity against MIA-PaCa-2 cells with IC50 values of 8.9, 36.5, 31.8, and 22.3 µM, respectively (positive control gemcitabine IC50 65.0 µM).


Subject(s)
Antineoplastic Agents , Penicillium , Humans , Penicillium/chemistry , Antineoplastic Agents/chemistry , Phenylacetates , Cell Line, Tumor , Benzoic Acid , Molecular Structure
4.
Mitochondrial DNA B Resour ; 6(11): 3204-3206, 2021.
Article in English | MEDLINE | ID: mdl-34660904

ABSTRACT

Paris stigmatosa is a new described species of Melanthiaceae. In this study, the complete chloroplast (cp) genome sequence of P. stigmatosa was first reported and characterized. The cp genome is 165,623 bp in length and contains a pair of inverted repeats (IRs, 34,165 bp) separated by a large (84,327 bp) and small (12,966 bp) single-copy regions. A total of 113 genes were predicted, including 79 protein-coding genes, 30 tRNA genes and 4 rRNA genes. The phylogenetic analysis suggested that P. stigmatosa is sister of the clade formed by P. marmorata and P. luquanensis.

5.
Front Pharmacol ; 12: 686133, 2021.
Article in English | MEDLINE | ID: mdl-34349647

ABSTRACT

Zishen Yutai Pills (ZYP) is a safe and well quality-controlled TCM preparation with promising effects in many fields of reproduction, including prevention of miscarriage, increase of pregnancy rate during in vitro fertilization-embryo transfer (IVF-ET). The plasma of patients was collected from a clinical trial, namely, "Effect of Traditional Chinese Medicine vs placebo on live births among women undergoing in vitro fertilization, a multi-center randomized controlled trial." Plasma samples were analyzed with metabonomics method. UPLC-MS technology was used to establish the plasma metabolic fingerprint. Multivariate statistical analysis was applied for comparing the differences of plasma metabolites between ZYP group and placebo group, 44 potential metabolites were screen out and identified. Pathway analysis was conducted with database mining. Compared with placebo, chemicals were found to be significantly down-regulated on HCG trigger day and 14 days after embryo transplantation, including trihexosylceramide (d18:1/26:1), glucosylceramide(d18:1/26:0), TG(22:6/15:0/22:6), TG(22:4/20:4/18:4). Compared with placebo, some chemicals were found to be significantly up-regulated on HCG trigger day and 14 days after embryo transplantation, i.e., PIP3(16:0/16:1), PIP2(18:1/18:1), tauroursodeoxycholic acid, L-asparagine, L-glutamic acid, kynurenic acid, 11-deoxycorticosterone, melatonin glucuronide, hydroxytyrosol. These metabolites were highly enriched in pathways including sphingolipid metabolism, alanine, aspartic acid and glutamic acid metabolism, aminoacyl tRNA biosynthesis, taurine and hypotaurine metabolism. This study revealed metabolic differences between subjects administered with ZYP and placebo. Relating metabolites were identified and pathways were enriched, providing basis on the exploration on the underlying mechanisms of ZYP combined with IVF-ET in the treatment of infertility.

7.
ACS Appl Mater Interfaces ; 13(25): 30205-30212, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34137259

ABSTRACT

Bioskins possess a great ability to detect and deliver external mechanical or temperature stimuli into identifiable signals such as color changes. However, the integration of visualization with simultaneous detection of multiple complex external stimuli in a single biosensor device remains a challenge. Here we propose an all-solution-processed bioinspired stretchable electronic skin with interactive color changes and four-mode sensing properties. The fabricated biosensor demonstrates sensitive responses to various stimuli including pressure, strain, voltage, and temperature. Sensing visualization is realized by color changes of the e-skin from brown to green and finally bright yellow as a response to intensified external stimuli, suggesting great application potential in military defense, healthcare monitoring, and smart bionic skin.


Subject(s)
Colorimetry/instrumentation , Wearable Electronic Devices , Colorimetry/methods , Equipment Design , Humans , Pressure , Temperature
8.
Nanoscale Adv ; 3(9): 2475-2480, 2021 May 04.
Article in English | MEDLINE | ID: mdl-36134169

ABSTRACT

Electronic textiles (e-textiles) typically comprise fabric substrates with electronic components capable of heating, sensing, lighting and data storage. In this work, we rationally designed and fabricated anisotropic light/thermal emitting e-textiles with great mechanical stability based on a sandwich-structured tri-electrode device. By coating silver nanowire network/thermal insulation bilayer on fabrics, an anisotropic thermal emitter can be realized for smart heat management. By further covering the emissive film and the top electrode on the bilayer, light emitters with desirable patterns and colors are extracted from the top surface via an alternative current derived electroluminescence. Both the light and thermal emitting functions can be operated simultaneously or separately. Particularly, our textiles exhibit reliable heating and lighting performance in water, revealing excellent waterproof feature and washing stability.

9.
Fish Shellfish Immunol ; 106: 142-148, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32540503

ABSTRACT

An in-vitro study was carried out to examine the effects of yeast hydrolysate (YH) on antioxidant capacity and innate immunity of blunt snout bream (Megalobrama amblycephala) hepatocytes. Fish primary hepatocytes were seeded at a density of 3 × 105 cells mL-1 in 6-well tissue culture plates and treated with two different media including: 1) DMEM/F12 medium (control), and 2) YH medium [DMEM/F12 + 0.1 g L-1 YH]. After incubation for 24 h, the culture medium and primary hepatocytes were collected for subsequent analyses. The results showed no significant (P > 0.05) effect of YH on aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities and urea nitrogen (UN) concentration in the conditioned medium. However, significantly (P < 0.05) higher ALT and AST activities were found in YH treated hepatocytes compared to control. Moreover, YH supplementation led to significant enhancement of superoxide dismutase (SOD), catalase (CAT), alternative complement pathway (ACH50) and glutathione peroxidase (GPX) activities and reduction of malondialdehyde (MDA) concentration in the conditioned medium. Furthermore, YH application upregulated the expression of SOD, CAT and NOX2 genes and downregulated mRNA levels of Keap1, Nrf2 and Bach1 in hepatocytes. Also, markedly higher lysozyme activity and albumin concentration were found in the conditioned medium of YH group compared to the control. Additionally, expression of immune-related genes such as antimicrobial peptides 1 (Leap 1) and Leap 2 were significantly upregulated by YH application. Down-regulated expression of NADPH oxidase-2 (NOX2), Kelch-like-ECH-associated protein 1 (Keap1), NF-E2-related factor 2 (Nrf2) and BTB and CNC homolog 1 (Bach1) were observed in YH treated hepatocytes. To conclude, YH supplementation improved antioxidant capacity and innate immunity of blunt snout bream hepatocytes.


Subject(s)
Antioxidants/metabolism , Cyprinidae/immunology , Hepatocytes/immunology , Immunomodulation/drug effects , Protein Hydrolysates/pharmacology , Yeast, Dried/pharmacology , Animals , Hepatocytes/drug effects
10.
ACS Nano ; 14(6): 6707-6714, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32437131

ABSTRACT

Realizing multiple functions and sustainable manufacturing within the same electronic device would be highly attractive from a design and fabrication perspective. Here we demonstrate a recyclable dual-mode thin-film device that can perform both light emission and heat management simultaneously. The device is composed of a dissolvable emitting layer sandwiched between two undissolvable conducting films. The vertical multilayered device enables a highly flexible and foldable multicolor electroluminescent emission ranging from yellow or blue to white, and the coplanar monolayered conductor achieves tunable Joule heat temperature setting. By utilizing selective dissolution and artificial reconstruction of each layered component, the parent device shows full recyclability and reconstructability without severe performance degradation after several recycles. The proof-of concept device provides an ideal strategy to construct a multifunctional film system with recyclability and makes a significant contribution to scientific and technological advancement in low-cost sustainable electronics and optoelectronics.

11.
ACS Nano ; 14(4): 3876-3884, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32186191

ABSTRACT

In the past decades, various alternating current electroluminescent (ACEL) devices, especially the flexible ones, have been developed and used in flat panel display, large-scale decorating, logo display lighting, optical signaling, etc. Transparent plastics are usually used as substrates in ACEL devices; however, they are undegradable and may cause serious environmental pollution. Herein, we have developed a flexible transient ACEL device based on transparent fish gelatin (FG) films. The FG films were made from fish scales, which are sustainable, cost-efficient, and eco-friendly. These films could dissolve in water within seconds at 60 °C and degrade completely within 24 days in soil. The transmittance of these FG films was up to 91.1% in the visible spectrum, comparable to that of polyethylene terephthalate (PET) (90.4%). After forming a composite with silver nanowires (Ag NWs), the Ag NWs-FG film showed a transmittance up to 82.3% and a sheet resistance down to 22.4 Ω sq-1. The fabricated ACEL device based on the Ag NWs-FG film exhibited high flexibility and luminance up to 56.0 cd m-2. The device could be dissolved in water within 3 min. Our work demonstrates that the sustainable, flexible, and transparent FG films are a promising alternative for green and degradable substrates in the field of flexible electronics, including foldable displays, wearable devices, and health monitoring.


Subject(s)
Gelatin , Nanowires , Animals , Electronics , Fishes , Silver
12.
Fish Physiol Biochem ; 46(3): 843-860, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31981002

ABSTRACT

This study aimed to characterize the full-length cDNA of IRE1 from fish Megalobrama amblycephala and investigate its role in the pro-inflammatory response. A full-length cDNA coding IRE1 was cloned from blunt snout bream by RT-PCR and RACE approaches. The cDNA obtained covered 3665 bp with an open reading frame of 3096 bp encoding 1031 amino acids. Sequence alignment and phylogenetic analysis revealed a high degree of conservation (74-92%) among various species, retaining one signal peptide, one luminal domain, one serine/threonine kinase domain, one RNase domain, one activation loop, two N-linked glycosylation sites, and several phosphorylation sites. The highest IRE1 expression was observed in the trunk kidney followed by the brain and spleen, whereas relatively low expression levels were detected in the liver, intestine, adipose, skin, and heart. After lipopolysaccharide (LPS) challenge, the expressions of glucose-regulated protein 78 (GRP78), inositol-requiring enzyme 1 (IRE1), spliced X-box binding protein 1 (XBP1s), C/EBP homologous protein (CHOP), nuclear factor kappa B (NF-κB), tumor necrosis factor alpha (TNFα), and interleukin-6 (IL-6) all increased remarkably in the spleen and brain at different sampling time points, while LPS also upregulated all the genes tested in the intestine except C/EBP homologous protein. Overall, the results indicated that the IRE1 gene of Megalobrama amblycephala shared a high similarity compared with other vertebrates including several bony fish species. Its expression in three tissues was induced remarkably by the LPS challenge, which indicated that IRE1 played a vital role in LPS-induced inflammation on fish.


Subject(s)
Cyprinidae/immunology , Endoribonucleases/immunology , Fish Proteins/immunology , Protein Serine-Threonine Kinases/immunology , Animals , Cyprinidae/genetics , Endoribonucleases/genetics , Fish Proteins/genetics , Gene Expression Regulation/drug effects , Inflammation/genetics , Inflammation/immunology , Lipopolysaccharides/pharmacology , Protein Serine-Threonine Kinases/genetics
13.
RSC Adv ; 10(35): 20900-20904, 2020 May 27.
Article in English | MEDLINE | ID: mdl-35517775

ABSTRACT

The facile synthesis of large-area coordination polymer membranes with controlled nanoscale thicknesses is critical towards their applications in information storage electronics. Here, we have reported a facile and substrate-independent interfacial synthesis method for preparing a large-area two-dimensional (2D) coordination polymer membrane at the air-liquid interface. The prepared high-quality 2D membrane could be transferred onto an indium tin oxide (ITO) substrate to construct a nonvolatile memory device, which showed reversible switching with a high ON/OFF current ratio of 103, good stability and a long retention time. Our discovery of resistive switching with nonvolatile bistability based on the substrate-independent growth of the 2D coordination polymer membrane holds significant promise for the development of solution-processable nonvolatile memory devices with a miniaturized device size.

14.
Nanoscale ; 12(2): 524-529, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31845941

ABSTRACT

Carbon dots (C-dots) are promising and widely applied carbon fluorescent materials for next-generation white light-emitting diodes (WLEDs). However, nonnegligible thermal quenching issues induced by high working temperature of high-power WLEDs severely limit the further development of C-dot phosphors. In this paper, we report an efficient strategy to improve thermal dissipation within C-dot phosphors to solve the thermal quenching problem. C-dots/hexagonal boron nitride nanosheet (BNNS) hybrid nanostructures have been firstly prepared through an electrostatic assembly method. Owing to the effective heat transfer channels established by C-dots/BNNS in a polymer matrix, heat could be dissipated efficiently and the working temperature of WLEDs is reduced by 29 °C, suggesting excellent thermal quenching-resistance properties. Particularly, the hybrids show thermally stable emission without obvious emission loss up to 100 °C. Moreover, the C-dots/BNNS-WLEDs still maintain a high color rendering index of Ra > 89, revealing that the present strategy could promote the exploration of carbon phosphors with thermal quenching resistance for high-quality LED applications.

15.
Nanoscale ; 11(31): 14592-14597, 2019 Aug 08.
Article in English | MEDLINE | ID: mdl-31360968

ABSTRACT

Multicolor carbon phosphors as emerging light conversion materials, with full recyclability and stable color convertibility, are poised to accelerate the sustainable development of environment-friendly optoelectronics. Herein, we firstly report a facile strategy, combining single-step hydrothermal and differential washing methods, for the preparation of multicolor carbon emitters with nano-dot/micro-belt structures. The as-prepared hybrids exhibit excellent film-forming ability and demonstrate controllable multicolor solid-state luminescence ranging from white and green to blue light emission, by utilizing the synergistic effect between nano-dot and micro-belt structures. Particularly, the hybrid white emitters possess a robust ability of being fully recyclable without any performance degradation and formation of harmful byproducts. Moreover, light-emitting devices (LEDs) coated with the hybrid emitters show stable voltage-independent luminescence behavior in lighting applications. This work provides a simple route to modulate the optical properties of multicolor carbon-based emitters and shows great potential in the sustainable development of lighting-related products.

16.
Fish Physiol Biochem ; 45(5): 1747-1757, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31297679

ABSTRACT

An 8-week feeding trial was conducted to investigate effects of dietary protein levels (37, 40, and 43%) on the growth performance, feed utilization, digestive enzyme activity, and gene expressions of target of rapamycin (TOR) signaling pathway in fingerling yellow catfish. One hundred and eighty fingerlings (average weight 0.77 ± 0.03 g) were equally distributed across four replicate tanks for each of the three treatments, with 15 fish per tank. No difference (P > 0.05) was observed in initial body weight, survival rate (SR), hepatosomatic index (HSI), viscera index (VSI), dressing percentage (DP), and condition factor (CF) among all the treatments. The diet containing 40% protein increased significantly (P < 0.05) final body weight, weight gain rate (WGR), specific growth rate (SGR), protein efficiency ratio (PER), nitrogen retention (NRE), and energy retention (ERE) in fish. The highest protease activity in the stomach and intestine was observed in the P40 group (P < 0.05), while amylase and lipase were not significantly different (P > 0.05). The transcriptional levels of IGF-1, IGF-1R, and Akt were significantly (P < 0.05) higher in fish fed P40 or P43 than those of fish fed P37. TOR and S6K1 mRNA expressions were significantly (P < 0.05) increased in the P40 groups. Hence, the diet containing 40% protein would be suitable for the optimum growth and effective protein utilization of fingerling Pelteobagrus fulvidraco. In vitro, the transcriptional levels of IGF-1, IGF-1R, Akt, TOR, and S6K1 in hepatocyte supplemented with a 40-µM mixed amino acids were significantly (P < 0.05) higher compared to other treatments. No difference (P > 0.05) was observed in eukaryotic translation initiation factor 4E-binding protein 1 in vivo and in vitro among all the treatments. Effects of dietary protein level on growth performance likely are involved in the activation of TOR signaling pathway in fingerling Pelteobagrus fulvidraco.


Subject(s)
Catfishes/growth & development , Dietary Proteins/pharmacology , Digestion/drug effects , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Catfishes/physiology , Cells, Cultured , Diet/veterinary , Digestion/physiology , Enzymes/genetics , Enzymes/metabolism , Hepatocytes/enzymology , Hepatocytes/metabolism , Neural Tube Defects , Signal Transduction
17.
Nanoscale ; 11(14): 6662-6676, 2019 Apr 04.
Article in English | MEDLINE | ID: mdl-30896684

ABSTRACT

The development of high-performance photocatalytic fuel cells (PFCs) is seriously hampered by poor light utilization rates and low charge carrier transfer efficiency. Herein, we have experimentally obtained plasmonic Ag modified Cr-BiOCl (Cr-BOC/Ag) with high visible light photocatalytic activity and provided direct evidence for the substantially enhanced catalytic activity in metal-semiconductor photocatalysts. The experimental results revealed that the Cr doping and Ag modification could not only extend the photo absorption of BiOCl from the UV to the visible light region but could also greatly increase the generation and transfer rate of charge carriers because of its narrowed band gap and the localized surface plasmon resonance (LSPR) effect of metallic Ag. Under visible light irradiation, the Cr-BOC/Ag showed a remarkable enhancement in the PFC performance when the optimum contents of Cr doping and Ag loading was 14.4% and 4%, respectively. The trapping experiments and multiple characterizations demonstrated that the advantageous combination of the Cr doping effect and SPR effect induced by the Ag nanoparticles is responsible for the high generation rate of oxidative species and effective charge carrier transfer. By using RhB as fuel, approximately 75.1% color removal efficiency and 8.38% coulombic efficiency were obtained under visible light irradiation for 240 min, which are higher than those of MO and TC. In addition, the Jsc and Voc of the Cr-BOC/Ag photoanode were measured to be 0.0073 mA cm-2 and 0.543 V.

18.
Dev Comp Immunol ; 97: 28-37, 2019 08.
Article in English | MEDLINE | ID: mdl-30910418

ABSTRACT

The aim of this article is to investigate the mechanism of lipotoxicity induced by high-fat diets (HFD) in Megalobrama amblycephala. In the present study, fish (average initial weight 40.0 ±â€¯0.35 g) were fed with two fat levels (6% and 11%) diets with four replicates for 60 days. At the end of the feeding trial, fish were challenged by thioacetamide (TAA) and survival rate was recorded for the next 96 h. The result showed that long-term HFD feeding induced a significant increase (P < 0.05) in the levels of aspartate aminotransferase (GOT) and alanine aminotransferase (GPT) in plasma. In addition, liver histopathological analysis showed an increased dilation of the blood vessels, erythrocytes outside of the blood vessels and vacuolization in fish fed with high-fat diet. After TAA challenge, compared with group fed with normal-fat diets (NFD), fish fed with HFD showed a significantly (P < 0.05) low survival rate. After feeding Megalobrama amblycephala with HFD for 60 days, the protein content and gene expression of pro-inflammatory factors were significantly elevated (P < 0.05). The protein and gene relative expressions of a Caspase-3, Caspase-9 and CD68 were significantly increased (P < 0.05), while antioxidant-related enzyme activities were significantly reduced (P < 0.05) in the liver of fish fed with HFD. In addition, HFD feeding also induced genotoxicity. Comet assay showed a significantly (P < 0.05) elevated DNA damage in blunt snout bream fed with HFD. Compared with normal-fat diets (NFD) group, the protein expression of γH2AX and gene expressions involved in cell cycle arrest were significantly increased (P < 0.05) in fish fed with HFD. Data in this research showed that lipotoxicity induced by HFD was likely mediated by chronic inflammation regulating macrophage recruitment, apoptosis and DNA damage. The study was valuable to understand the mechanism by which liver injury is induced in fish fed with HFD.


Subject(s)
Cyprinidae/metabolism , Diet, High-Fat/adverse effects , Fish Diseases/metabolism , Inflammation/complications , Liver Diseases/metabolism , Liver/metabolism , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, Differentiation, Myelomonocytic/metabolism , Apoptosis/drug effects , Apoptosis/genetics , Caspase 3/genetics , Caspase 3/metabolism , Caspase 9/genetics , Caspase 9/metabolism , Chronic Disease , Cyprinidae/genetics , Fish Diseases/etiology , Fish Diseases/genetics , Gene Expression/drug effects , Inflammation/genetics , Inflammation/metabolism , Liver/drug effects , Liver/pathology , Liver Diseases/etiology , Liver Diseases/genetics , Thioacetamide/pharmacology
19.
Nanoscale ; 11(5): 2131-2137, 2019 Jan 31.
Article in English | MEDLINE | ID: mdl-30657518

ABSTRACT

Nanocarbon fluorescence materials are promising color converters for multicolor emission via phosphor-coated light emitting devices (LEDs). Herein, a facile time-controlled solvothermal route was developed to prepare solid-state multicolor nanocarbon emitters comprising dot/sheet nanohybrids. The nanocarbons demonstrate an aggregation-induced color switching behavior, leading to tunable light emission from blue to yellow by modulating the solvothermal reaction time. Particularly, these emitters show outstanding film-forming ability directly and a high production yield (∼40%). Moreover, the nanocarbon-coated ultraviolet LEDs exhibit high quality multicolor light emission and excellent color stability at high voltages, impelling the development of emerging carbon phosphors in fundamental research studies and practical applications.

20.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(3): 213-223, 2019 03.
Article in English | MEDLINE | ID: mdl-30553054

ABSTRACT

This study was conducted to understand the effect of high-fat diet challenge on lipid transport and endoplasmic reticulum stress in blunt snout bream. Ninety fish (average weight: 41.84 ±â€¯0.07 g) were randomly fed a control diet (6% fat) or a high-fat diet (11% fat) for 9 weeks. The growth performance and feed utilization efficiency were evaluated at the end of the trial. The liver samples of both groups were harvested for molecular analysis and histological evaluation. Compared to the Control group, the high-fat diet group showed no effects on either growth performance or energy intake in blunt snout bream. However, high-fat diet resulted in a massive accumulation of lipid and pathological structural alternations, and disrupted expression of lipid transport-related genes and endoplasmic reticulum stress in the liver of the fish. In vitro, after exposure of the isolated primary hepatocytes from blunt snout bream to oleic acid, the cells showed increased intracellular TG accumulation, decreased VLDL secretion, which was attributed to altered expression levels of lipid transport-related genes through the activated IRE1/XBP1 signaling. The oleic acid-induced detrimental effects were alleviated by co-incubating the cells with an IER1 inhibitor, 4µ8c. In conclusion, high-fat diet could lead to aberrant lipid secretion by activating the ER stress-associated IRE1/XBP1 pathway. Inhibiting the activity of IRE1 represents a promising target to rescue the side-effects of high-fat diet on the liver function of blunt snout bream.


Subject(s)
Cyprinidae/metabolism , Endoplasmic Reticulum Stress/physiology , Lipid Metabolism/physiology , Animals , Biological Transport , DNA-Binding Proteins/metabolism , Diet, High-Fat/adverse effects , Endoribonucleases/metabolism , Hepatocytes/metabolism , Lipid Metabolism/drug effects , Lipids , Liver/metabolism , Oleic Acid/metabolism , Protein Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...