Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Can J Infect Dis Med Microbiol ; 2017: 9073172, 2017.
Article in English | MEDLINE | ID: mdl-29527230

ABSTRACT

The outbreaks of pseudorabies have been frequently reported in Bartha-K61-vaccinated farms in China since 2011. To study the pathogenicity and evolution of the circulating pseudorabies viruses in Fujian Province, mainland China, we isolated and sequenced the whole genome of a wild-type pseudorabies virus strain named "FJ-2012." We then conducted a few downstream bioinformatics analyses including phylogenetic analysis and pathogenic analysis and used the virus to infect 6 pseudorabies virus-free piglets. FJ-2012-infected piglets developed symptoms like high body temperature and central nervous system disorders and had high mortality rate. In addition, we identified typical micropathological changes such as multiple gross lesions in infected piglets through pathological analysis and conclude that the FJ-2012 genome is significantly different from known pseudorabies viruses, in which insertions, deletions, and substitutions are observed in multiple immune and virulence genes. In summary, this study shed lights on the molecular basis of the prevalence and pathology of the pseudorabies virus strain FJ-2012. The genome of FJ-2012 could be used as a reference to study the evolution of pseudorabies viruses, which is critical to the vaccine development of new emerging pseudorabies viruses.

2.
PLoS One ; 10(6): e0131723, 2015.
Article in English | MEDLINE | ID: mdl-26121247

ABSTRACT

Circulation of genotype VII Newcastle disease virus (NDV) has posed a great threat for the poultry industry worldwide. Antibodies against Hemagglutinin-neuraminidase (HN), a membrane protein of NDV with critical roles in NDV infection, have been reported to provide chickens protection from NDV infection. In this study, we comprehensively analyzed the in vivo antibody responses against the linear antigenic domains of the HN protein from genotype VII NDV using a yeast surface display system. The results revealed four distinct regions of HN, P1 (1-52aa), P2 (53-192aa), P3 (193-302aa) and P4 (303-571aa), respectively, according to their antigenic potency. Analysis by FACS and ELISA assay indicated P2 to be the dominant linear antigenic domain, with the immunogenic potency to protect the majority of chickens from NDV challenge. In contrast, the P1, P3 and P4 domains showed weak antigenicity in vivo and could not protect chickens from NDV challenge. These results provide important insight into the characteristic of humoral immune responses elicited by HN of NDV in vivo.


Subject(s)
Cell Surface Display Techniques , Genotype , HN Protein/immunology , Newcastle disease virus/genetics , Newcastle disease virus/immunology , Protein Interaction Domains and Motifs/immunology , Two-Hybrid System Techniques , Animals , Antigens, Viral/immunology , Chickens , Epitope Mapping , Epitopes/chemistry , Epitopes/immunology , HN Protein/chemistry , Immune Sera/immunology , Models, Molecular , Newcastle Disease/immunology , Newcastle Disease/prevention & control , Newcastle Disease/virology , Peptide Library , Protein Conformation
3.
PLoS One ; 9(6): e99905, 2014.
Article in English | MEDLINE | ID: mdl-24937158

ABSTRACT

Newcastle disease virus (NDV) is a member of the Paramyxovirinae subfamily and can infect most species of birds. It has been a great threat for the poultry industry all around the world. In this report, we successfully produced infectious pseudotyped pNL4-3-Luc-R(-)E(-) (HIV-Luc) viruses with the HN and F envelope proteins of NDV. Further investigation revealed the cytoplasmic domains of HN and F, especially HN, plays a significant role in the infection efficiency of these pseudotyped HIV-Luc viruses. Replacement of, or direct fusion to the cytoplasmic domain of the HN protein by that of vesicular stomatitis virus G (VSV-G) could greatly enhance or destroy the infective potential of HN and F-pseudotyped (NDV-pseudotyped) HIV-Luc virus. We further established a novel neutralization assay to evaluate neutralizing antibodies against NDV with the NDV-pseudotyped HIV-Luc viruses. Comparative neutralization data indicate that the results determined by using the NDV-pseudotyped HIV-Luc viruses are as reliable as those by the conventional virus-neutralization assay (VN test) with native NDV. Moreover, the results show that the novel neutralization assay is more sensitive than the VN test.


Subject(s)
HIV-1/genetics , Newcastle Disease/immunology , Newcastle disease virus/immunology , Animals , Antibodies, Neutralizing/physiology , Antibodies, Viral/physiology , Birds , Genes, Reporter , HEK293 Cells , HN Protein/genetics , Humans , Immune Sera/immunology , Luciferases/biosynthesis , Luciferases/genetics , Neutralization Tests , Newcastle Disease/prevention & control , Newcastle Disease/virology , Newcastle disease virus/genetics , Viral Fusion Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...