Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 63(8): 3859-3869, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38335061

ABSTRACT

During the PUREX process, the separation between U(VI) and Pu(IV) is achieved by reducing Pu(IV) to Pu(III), which is complicated and energy-consuming. To address this issue, we report here the first case of separation of U(VI) from Pu(IV) by o-phenanthroline diamide ligands under high acidity. Two new o-phenanthroline diamide ligands (1,10-phenanthroline-2,9-diyl)bis(indolin-1-ylmethanone) (L1) and (1,10-phenanthroline-2,9-diyl)bis((2-methylindolin-1-yl)methanone) (L2) were synthesized, which can effectively separate U(VI) from Pu(IV) even at 4 mol/L HNO3. The highest separation factor of U(VI) and Pu(IV) can reach over 1000, setting a new record for the separation of U(VI) from Pu(IV) under high acidity. Furthermore, extracted U(VI) can be easily recovered with water or dilute nitric acid, and the extraction performance remains stable even after 150 kGy gamma irradiation, which provides solid experimental support for potential engineering applications. The results of UV-vis titration and single-crystal X-ray diffraction measurements show that the 1:1 complex formed by L1 with U(VI) is more stable than all of the previously reported phenanthroline ligands, which reasonably reveals that the ligand L1 designed in this work has excellent affinity for U(VI). The findings of this work promise to contribute to the facilitation of the PUREX process by avoiding the use of reducing agents. It also provides new clues for designing ligands to achieve efficient separation between U(VI) and Pu(IV) at high acidity.

2.
J Hazard Mater ; 465: 133508, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38228009

ABSTRACT

Although phenanthroline diamide ligands have been widely reported, their limited solubility in organic solvents and poor performance in the separation of trivalent actinides (An(III)) and lanthanides (Ln(III)) at high acidity are still clear demerits. In this study, we designed and synthesized three highly soluble phenanthroline diamide ligands with different side chains. By introducing alkyl chains and ester groups, the ligands solubility in 3-nitrotrifluorotoluene is increased to over 600 mmol/L, significantly higher than the previous reported phenanthroline diamide ligands. Based on anomalous aryl strengthening, benzene ring was incorporated to enhance ligand selectivity toward Am(III). Extraction experiments demonstrated favorable selectivity of all the three ligands towards Am(III). The optimal separation factor (SFAm/Eu) reaches 53 at 4 mol/L HNO3, representing one of the most effective separation of An(III) over Ln(III) under high acidity. Slope analysis, single crystal structure analysis, as well as titration of ultraviolet visible spectroscopy, mass spectrometry, and nuclear magnetic resonanc confirmed the formation of 1:1 and 1:2 complex species between the metal ions and the ligands depending on the molar ratio of metal ions in the reaction mixture. The findings of this study offer valuable insights for developing phenanthroline diamide ligands for An(III)/Ln(III) separation.

SELECTION OF CITATIONS
SEARCH DETAIL
...