Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 62(2): e202212339, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36269169

ABSTRACT

Multivalent batteries show promising prospects for next-generation sustainable energy storage applications. Herein, we report a polytriphenylamine (PTPAn) composite cathode capable of highly reversible storage of tetrakis(hexafluoroisopropyloxy) borate [B(hfip)4 ] anions in both Magnesium (Mg) and calcium (Ca) battery systems. Spectroscopic and computational studies reveal the redox reaction mechanism of the PTPAn cathode material. The Mg and Ca cells exhibit a cell voltage >3 V, a high-power density of ∼∼3000 W kg-1 and a high-energy density of ∼∼300 Wh kg-1 , respectively. Moreover, the combination of the PTPAn cathode with a calcium-tin (Ca-Sn) alloy anode could enable a long battery-life of 3000 cycles with a capacity retention of 60 %. The anion storage chemistry associated with dual-ion electrochemical concept demonstrates a new feasible pathway towards high-performance divalent ion batteries.

3.
Nat Commun ; 13(1): 3849, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35788588

ABSTRACT

Rechargeable calcium batteries possess attractive features for sustainable energy-storage solutions owing to their high theoretical energy densities, safety aspects and abundant natural resources. However, divalent Ca-ions and reactive Ca metal strongly interact with cathode materials and non-aqueous electrolyte solutions, leading to high charge-transfer barriers at the electrode-electrolyte interface and consequently low electrochemical performance. Here, we demonstrate the feasibility and elucidate the electrochemical properties of calcium-tin (Ca-Sn) alloy anodes for Ca-ion chemistries. Crystallographic and microstructural characterizations reveal that Sn formed from electrochemically dealloying the Ca-Sn alloy possesses unique properties, and that this in-situ formed Sn undergoes subsequent reversible calciation/decalciation as CaSn3. As demonstration of the suitability of Ca-Sn alloys as anodes for Ca-ion batteries, we assemble coin cells with an organic cathode (1,4-polyanthraquinone) in an electrolyte of 0.25 M calcium tetrakis(hexafluoroisopropyloxy)borate in dimethoxyethane. These electrochemical cells are charged/discharged for 5000 cycles at 260 mA g-1, retaining a capacity of 78 mAh g-1 with respect to the organic cathode. The discovery of new class of Ca-Sn alloy anodes opens a promising avenue towards viable high-performance Ca-ion batteries.

4.
ACS Appl Mater Interfaces ; 13(28): 33123-33132, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34227794

ABSTRACT

Simple magnesium salts with high electrochemical and chemical stability and adequate ionic conductivity represent a new-generation electrolyte for magnesium (Mg) batteries. Similar to other Mg electrolytes, the simple-salt electrolyte also suffers from high charge-transfer resistance on the Mg surface due to the adsorbed species in the solution. In the current study, we built a model Mg cell system with the Mg[B(hfip)4]2/DME electrolyte and Chevrel phase Mo6S8 cathode, to demonstrate the effect of such anode-electrolyte interfacial properties on the full-cell performance. It was found that the cell required additional activation cycles to achieve its maximal capacity. The activation process is mainly attributed to the conditioning of the anode-electrolyte interface, which could be boosted by introducing an additive amount of Mg(BH4)2 to the Mg[B(hfip)4]2/DME electrolyte. Electrochemical and spectroscopic analyses revealed that the Mg(BH4)2 additive helps to remove the native oxide layer and promotes the formation of a solid electrolyte interphase layer on Mg. As a result, the full cell with the additive-containing electrolyte delivered a stable capacity from the second cycle onward. Further battery tests showed a reversible cycling for 600 cycles and an excellent rate capability, indicating good compatibility of the Mg(BH4)2 additive. The current study not only provides fundamental insights into the interfacial phenomena in Mg batteries but also highlights the facile tunability of the simple-salt Mg electrolytes.

SELECTION OF CITATIONS
SEARCH DETAIL
...