Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.838
Filter
1.
Article in English | MEDLINE | ID: mdl-39367820

ABSTRACT

Carbon neutrality necessitates new technologies for renewable energy utilization, active regulation of heat exchange, and material recycling to promote green and intelligent building development. Currently, the integration of these functions and characteristics into a single coating material presents a significant challenge. Here, we demonstrate a novel triboelectric and radiative cooling coating with mussel-inspired architectures, fabricated using cellulose nanofibers and Mica-TiO2 as a functional mortar and brick, respectively. The abundant polar groups and specific surface area of cellulose nanofibers enable a high accumulation of induced electrostatic charges, allowing the coating to act as a tribolayer to generate triboelectric outputs. The regularly layered arrangement of Mica-TiO2 endows fire resistance to the coating, which exhibits self-extinguishing properties and maintains 45% of its original electrical output even after direct exposure to flame for 20 s. Additionally, the created multilayered stacking morphology, as well as intense group vibrations of Mica-TiO2, facilitates high reflectivity (Rsolar = 0.9) and long-wave infrared emissivity (ϵLWIR = 0.94), achieving a daytime subambient temperature drop of 5.3 °C. Notably, the coating can be recycled easily while maintaining its triboelectric, radiative cooling, and fire-resistant properties. This work provides an innovative strategy for unifying triboelectric and radiative cooling functions, as well as recyclability, into a single coating material, offering new insights for future sustainable and energy-efficient buildings.

2.
Theriogenology ; 230: 285-298, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39357167

ABSTRACT

Oocytes and early embryos are exposed to many uncontrollable factors that trigger endoplasmic reticulum (ER) stress during in vitro culture. Prevention of ER stress is an effective way to improve the oocyte maturation rate and oocyte quality. Increasing evidence suggests that dietary intake of sufficient n-3 polyunsaturated fatty acids (PUFAs) is associated with health benefits, particularly in the domain of female reproductive health. We found that supplementation of eicosatrienoic acid (ETA) during in vitro maturation (IVM) of oocyte significantly downregulated ER stress-related genes. Mitochondria-associated membranes (MAMs) are communications areas between the ER and mitochondria. Inositol 1,4,5-trisphosphate receptor (IP3R) is a key calcium channels in MAMs and, participates in the regulation of many cellular functions. Notably, the MAM area was significantly decreased in ETA-treated oocytes. CDGSH iron sulfur domain 2 (CISD2) is presents in MAMs, but its role in oocytes is unknown. ETA treatment significantly increased CISD2 expression, and siRNA-mediated knockdown of CISD2 blocked the inhibitory effect of ETA on IP3R. Transcriptomic sequencing and immunoprecipitation experiments showed that ETA treatment significantly decreased expression of the E3 ubiquitin ligase PRKN. PRKN induced ubiquitination and degradation of CISD2, indicating that the PRKN-mediated ubiquitin-proteasome system regulates CISD2. In conclusion, our study reveals the mechanism by which ETA supplementation during IVM alleviates mitochondrial calcium overload under ER stress conditions by decreasing PRKN-mediated ubiquitination of CISD2 and facilitating inhibition of IP3R by CISD2/BCL-2. This improves oocyte quality and subsequent embryo developmental competence prior to implantation.

3.
Ying Yong Sheng Tai Xue Bao ; 35(6): 1492-1500, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39235006

ABSTRACT

Improving the availability of soil phosphorus (P) and promoting tree growth through tree species selection and assembly are the critical issue. We conducted an afforestation experiment following randomized block experimental design with 1, 2, 4, and 6 tree species richness in south subtropics, including Pinus massoniana, Mytilaria laosensis, Erythrophleum fordii, Castanopsis hystrix, Michelia macclurei, Manglietia glauca, Aquilaria sinensis, and Dalbergia odorifera. We measured the bioavailable P components (CaCl2-P, citrate-P, enzyme-P and HCl-P) and examined the effects of different tree species assembly on bioavailable P components and tree growth. The results showed that, compared with non-nitrogen-fixing tree species, the mixing of nitrogen-fixing tree species (E. fordii and D. odorifera) effectively increased the contents of soil water, total nitrogen, total phosphorus, and microbial biomass P (MBP). The assembly of specific tree species improved the accumulation of bioavailable P. Mixing of nitrogen-fixing tree species significantly increased CaCl2-P content by 46.2% to 160.3%, the enzyme-P content produced by microbial mineralization by 69.3% to 688.2%, and HCl-P by 31.5% to 81.3%, increased MBP by 81.8% to 149.4%, and microbial biomass N (MBN) by 88.1% to 160.6%, respectively. Redundancy and correlation analysis results showed that MBP, available P, total phosphorus, L-leucine aminopeptidase, cellobiose, acid phosphatase, MBN and soil organic carbon were key factors driving the variation of rhizosphere soil bioavailable P. Mixing of nitrogen-fixing tree species increased enzyme-P and citrate-P, and the availability of which were positively correlated to tree basal area. In this study, mixing of nitrogen-fixing tree species increased the rhizosphere soil bioavailable P content, which facilitates tree growth.


Subject(s)
Phosphorus , Rhizosphere , Soil , Trees , Phosphorus/metabolism , Phosphorus/analysis , Trees/growth & development , Trees/metabolism , Soil/chemistry , China , Tropical Climate , Nitrogen/metabolism , Nitrogen/analysis , Pinus/growth & development , Pinus/metabolism
4.
Adv Mater ; : e2411942, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39340286

ABSTRACT

Alkaline hydrogen evolution reaction (HER) has great potential in practical hydrogen production but is still limited by the lack of active and stable electrocatalysts. Herein, the efficient water dissociation process, fast transfer of adsorbed hydroxyl and optimized hydrogen adsorption are first achieved on a cooperative electrocatalyst, named as Ru-Sn/SnO2 NS, in which the Ru-Sn dual metal sites and SnO2 heterojunction are constructed based on porous Ru nanosheet. The density functional theory (DFT) calculations and in situ infrared spectra suggest that Ru-Sn dual sites can optimize the water dissociation process and hydrogen adsorption, while the existence of SnO2 can induce the unique hydroxyl spillover effect, accelerating the hydroxyl transfer process and avoiding the poison of active sites. As results, Ru-Sn/SnO2 NS display remarkable alkaline HER performance with an extremely low overpotential (12 mV at 10 mA cm-2) and robust stability (650 h), much superior to those of Ru NS (27 mV at 10 mA cm-2 with 90 h stability) and Ru-Sn NS (16 mV at 10 mA cm-2 with 120 h stability). The work sheds new light on designing of efficient alkaline HER electrocatalyst.

5.
Virol Sin ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39151705

ABSTRACT

The live attenuated hepatitis A virus vaccine H2 strain was developed by passaging a wild-type H2w isolate in cell cultures. Currently, the mechanism underlying its attenuation phenotype remain largely unknown. In this study, we generated a full-length infectious cDNA clone of the H2 strain using in-fusion techniques. The recovered H2 strain (H2ic) from the cDNA clone exhibited an efficient replication in both the hepatoma cell line Huh7.5.1 and the 2BS cell line used for vaccine production, similar to the parental H2 strain. Additionally, H2ic did not cause disease in Ifnar1-/- C57 mice, consistent with the H2 strain. To explore the cell-adaptive mutations of the H2 strain, chimeric viruses were generated by replacing its non-structural proteins with corresponding regions from H2w using the infectious cDNA clone as a genetic backbone. The chimeric viruses carrying the 3C or 3D proteins from H2w showed decreased replication in Huh7.5.1 and 2BS cell lines compared to H2ic. Other chimeric viruses containing the 2B, 2C, or 3A proteins from H2w failed to be recovered. Furthermore, there were no significant differences in disease manifestation in mice between H2ic and the recovered chimeric viruses. These results demonstrate that adaptive mutations in the 2B, 2C, and 3A proteins are essential for efficient replication of the H2 strain in cell cultures. Mutations in the 3C and 3D proteins contribute to enhanced replication in cell cultures but did not influence the attenuated phenotypes in mice. Together, this study presents the first reverse genetic system of the H2 strain and identifies viral proteins essential for adaptation to cell cultures.

6.
Connect Tissue Res ; : 1-10, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39140391

ABSTRACT

PURPOSE: Joint contracture is a common disease in clinical practice, joint bleeding is an important factor affecting the progression of joint contracture. This study aimed to explore the effect of extracorporeal shock wave on alleviating joint capsule fibrosis caused by intra-articular hemorrhage in rats. METHODS: Forty two SD rats were randomly divided into seven groups. Perform simple fixation and fixation after blood injection separately. Measure the range of motion of each group's knee joints and calculate the corresponding degree of contraction. Use HE staining and Masson staining to detect the number of anterior joint capsule cells and collagen deposition. Detection of changes in Wnt1, ß-catenin protein expression in joint capsule using Western blotting. RESULTS: Compared to group C, the degree of knee joint contracture in M1 and M2 groups of rats increased, and collagen deposition, cell number and Wnt1, ß-catenin protein expression also increased accordingly. Compared to M1 and M2 groups, the degree of knee contraction in E1 and E2 groups were reduced, while collagen deposition, cell number and Wnt1, ß-catenin protein expression were decreased, and the degree of joint contracture in NR1 and NR2 groups showed no significant improvement. Compared to NR1 and NR2 groups, the degree of knee contraction in E1 and E2 groups were reduced, while collagen deposition, cell number and Wnt1, ß-catenin protein expression were decreased. CONCLUSIONS: Both rat models of knee joint contracture were successful, and joint bleeding can exacerbate joint contracture. Extracorporeal shock waves alleviate joint capsule fibrosis caused by intra-articular bleeding in rats.

7.
Helicobacter ; 29(4): e13121, 2024.
Article in English | MEDLINE | ID: mdl-39097924

ABSTRACT

BACKGROUND: Current guidelines recommend bismuth-containing quadruple therapy for patients newly diagnosed with Helicobacter pylori (H. pylori) infection. We aimed to compare the efficacy and safety of tetracycline administered three times daily versus four times daily in bismuth-containing quadruple therapy for first-line treatment of H. pylori infection. METHODS: This multicenter, noninferiority, randomized controlled study, conducted in China, recruited treatment-naïve adults with H. pylori infection, randomized 1:1 into two treatment groups to receive either of the following bismuth-containing quadruple therapies: esomeprazole 20 mg twice-daily; bismuth 220 mg twice-daily; amoxicillin 1000 mg twice-daily; and tetracycline 500 mg three times daily (TET-T) versus 500 mg four times daily (TET-F). At least 6 weeks post-treatment, a 13C-urea breath test was performed to evaluate H. pylori eradication. RESULTS: In total, 406 patients were randomly assigned to the two treatment groups. Intention-to-treat eradication rates were 91.63% (186/203; 95% confidence interval [CI] 87.82%-95.44%) versus 90.15% (183/203; 95% CI 86.05%-94.25%) (p = 0.0005) and per-protocol eradication rates were 95.34% (184/193; 95% CI 92.36%-98.31%) versus 95.72% (179/187; 95% CI 92.82%-98.62%) (p = 0.0002) for the TET-T and TET-F group, respectively. TET-T-treated patients had a lower incidence of adverse effects than TET-F-treated patients (21.61% vs. 31.63%, p = 0.024), with no significant differences in compliance to treatment between the groups. CONCLUSION: As a first-line therapy for H. pylori infection, the eradication rate of the TET-T therapy was noninferior to that of the TET-F therapy while significantly reducing the incidence of adverse reactions. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT05431075.


Subject(s)
Anti-Bacterial Agents , Bismuth , Drug Therapy, Combination , Helicobacter Infections , Helicobacter pylori , Tetracycline , Humans , Helicobacter Infections/drug therapy , Tetracycline/therapeutic use , Tetracycline/administration & dosage , Tetracycline/adverse effects , Male , Middle Aged , Female , Bismuth/therapeutic use , Bismuth/adverse effects , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/adverse effects , Adult , Helicobacter pylori/drug effects , Treatment Outcome , China , Amoxicillin/therapeutic use , Amoxicillin/administration & dosage , Drug Administration Schedule , Esomeprazole/therapeutic use , Esomeprazole/administration & dosage , Aged , Young Adult , Breath Tests , Proton Pump Inhibitors/therapeutic use , Proton Pump Inhibitors/administration & dosage , Proton Pump Inhibitors/adverse effects
9.
Heliyon ; 10(12): e32727, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38994078

ABSTRACT

Multiple cell death pathways are involved in neuronal death in ischemic stroke (IS). However, the role of different cell death pathways in different cell types has not been elucidated. By analyzing three single-nucleus RNA sequencing (snRNA-seq) data of IS, we first found that a variety of programmed cell death (PCD) -related genes were significantly changed in different cell types. Based on machine learning and virtual gene knockout, we found that ferroptosis related genes, ferritin heavy chain 1 (Fth1) and ferritin light chain (Ftl1), play a key role in IS. Ftl1 and Fth1 can promote microglia activation, as well as the production of inflammatory factors and chemokines. Cell communication analysis showed that activated microglia could enhance chemotactic peripheral leukocyte infiltration, such as macrophages and neutrophils, through Spp1-Cd44 and App-Cd74 signaling, thereby aggravating brain tissue damage. Furthermore, real-time quantitative polymerase chain reaction (RT-qPCR) showed that P2ry12 and Mef2c were significantly decreased in oxygen-glucose deprivation (OGD) group, while Ftl1, Fth1, Apoe, Ctsb, Cd44 and Cd74 were significantly increased in OGD group. Collectively, our findings suggested targeted therapy against microglia Ftl1 and Fth1 might improve the state of microglia, reduce the infiltration of peripheral immune cells and tissue inflammation, and then improve the ischemic brain injury in mouse.

10.
Helicobacter ; 29(1): e13055, 2024.
Article in English | MEDLINE | ID: mdl-39078641

ABSTRACT

BACKGROUND: Large language models (LLMs) are promising medical counseling tools, but the reliability of responses remains unclear. We aimed to assess the feasibility of three popular LLMs as counseling tools for Helicobacter pylori infection in different counseling languages. MATERIALS AND METHODS: This study was conducted between November 20 and December 1, 2023. Three large language models (ChatGPT 4.0 [LLM1], ChatGPT 3.5 [LLM2], and ERNIE Bot 4.0 [LLM3]) were input 15 H. pylori related questions each, once in English and once in Chinese. Each chat was conducted using the "New Chat" function to avoid bias from correlation interference. Responses were recorded and blindly assigned to three reviewers for scoring on three established Likert scales: accuracy (ranged 1-6 point), completeness (ranged 1-3 point), and comprehensibility (ranged 1-3 point). The acceptable thresholds for the scales were set at a minimum of 4, 2, and 2, respectively. Final various source and interlanguage comparisons were made. RESULTS: The overall mean (SD) accuracy score was 4.80 (1.02), while 1.82 (0.78) for completeness score and 2.90 (0.36) for comprehensibility score. The acceptable proportions for the accuracy, completeness, and comprehensibility of the responses were 90%, 45.6%, and 100%, respectively. The acceptable proportion of overall completeness score for English responses was better than for Chinese responses (p = 0.034). For accuracy, the English responses of LLM3 were better than the Chinese responses (p = 0.0055). As for completeness, the English responses of LLM1 was better than the Chinese responses (p = 0.0257). For comprehensibility, the English responses of LLM1 was better than the Chinese responses (p = 0.0496). No differences were found between the various LLMs. CONCLUSIONS: The LLMs responded satisfactorily to questions related to H. pylori infection. But further improving completeness and reliability, along with considering language nuances, is crucial for optimizing overall performance.


Subject(s)
Counseling , Helicobacter Infections , Helicobacter pylori , Language , Humans , Helicobacter Infections/diagnosis , Reproducibility of Results , Surveys and Questionnaires
11.
World J Diabetes ; 15(6): 1291-1298, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38983814

ABSTRACT

BACKGROUND: Lingguizhugan (LGZG) decoction is a widely used classic Chinese medicine formula that was recently shown to improve high-fat diet (HFD)-induced insulin resistance (IR) in animal studies. AIM: To assess the therapeutic effect of LGZG decoction on HFD-induced IR and explore the potential underlying mechanism. METHODS: To establish an IR rat model, a 12-wk HFD was administered, followed by a 4-wk treatment with LGZG. The determination of IR status was achieved through the use of biochemical tests and oral glucose tolerance tests. Using a targeted meta-bolomics platform to analyze changes in serum metabolites, quantitative real-time PCR (qRT-PCR) was used to assess the gene expression of the ribosomal protein S6 kinase beta 1 (S6K1). RESULTS: In IR rats, LGZG decreased body weight and indices of hepatic steatosis. It effectively controlled blood glucose and food intake while protecting islet cells. Metabolite analysis revealed significant differences between the HFD and HFD-LGZG groups. LGZG intervention reduced branched-chain amino acid levels. Levels of IR-related metabolites such as tryptophan, alanine, taurine, and asparagine decreased significantly. IR may be linked to amino acids due to the contemporaneous increase in S6K1 expression, as shown by qRT-PCR. CONCLUSIONS: Our study strongly suggests that LGZG decoction reduces HFD-induced IR. LGZG may activate S6K1 via metabolic pathways. These findings lay the groundwork for the potential of LGZG as an IR treatment.

12.
Endocr Metab Immune Disord Drug Targets ; : e060324227740, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38988067

ABSTRACT

BACKGROUND: Polycystic Ovary Syndrome (PCOS) is a highly prevalent, complex, heterogeneous, polygenic endocrine disorder characterized by metabolic and reproductive dysfunction that affects 8-13% of women of reproductive age worldwide. The pathogenesis of PCOS has not been fully clarified and includes genetics, obesity, and insulin resistance (IR). Oxidative stress (OS) of PCOS is independent of obesity. It can induce IR through post-insulin receptor defects, impair glucose uptake in muscle and adipose tissue, and exacerbate IR by reducing insulin secretion from pancreatic ß-cells. OBJECTIVE: To investigate the effects of Calorie Restricted Diet (CRD), High Protein Diet (HPD), and High Protein and High Dietary Fiber Diet (HPD+HDF) on body composition, insulin resistance, and oxidative stress in overweight/obese PCOS patients. METHODS: A total of 90 overweight/obese patients with PCOS were selected to receive an 8- week medical nutrition weight loss intervention at our First Hospital of Peking University, and we randomly divided them into the CRD group (group A), the HPD group (group B), and the HPD+HDF group (group C), with 30 patients in each group. We measured their body composition, HOMA-IR index, and oxidative stress indicators. The t-test, Mann-Whitney U test, analysis of variance (ANOVA), and Kruskal-Wallis H test were used to compare the efficacy of the three methods. RESULTS: After eight weeks, the body weights of the three groups decreased by 6.32%, 5.70% and 7.24%, respectively, and the Visceral Fat Area (VFA) values decreased by 6.8 cm2, 13.4 cm2 and 23.45 cm2, respectively, especially in group C (p >0.05). The lean body mass (LBM), also known as the Fat-Free Mass (FFM) values of group B and group C after weight loss, were higher than that of group A (p >0.05). After weight loss, the homeostatic model assessment of insulin resistance (HOMA-IR) index and malondialdehyde (MDA) were decreased. Superoxide dismutase (SOD) was increased in all three groups (p >0.05), and the changes in SOD and MDA in group B and group C were more significant (p >0.05). HOMA-IR index positively correlated with body mass index (BMI) (r=0.195; p >0.05); MDA positively correlated with percent of body fat (PBF) (r=0.186; p >0.05) and HOMA-IR index (r=0.422; p >0.01); SOD positively correlated with LMI/FFMI (r=0.195; p >0.05), negatively correlated with HOMA-IR index (r=-0.433; p >0.01). CONCLUSION: All three diets were effective in reducing the body weight of overweight/obese patients with PCOS by more than 5% within 8 weeks and could improve both insulin resistance and oxidative stress damage. Compared with CRD, HPD and HPD+HDF diets could better retain lean body mass and significantly improve oxidative stress damage. CLINICAL TRIAL NUMBER: ChiCTR2100054961.

13.
Research (Wash D C) ; 7: 0406, 2024.
Article in English | MEDLINE | ID: mdl-38979514

ABSTRACT

Organic polymer materials, as the most abundantly produced materials, possess a flammable nature, making them potential hazards to human casualties and property losses. Target polymer design is still hindered due to the lack of a scientific foundation. Herein, we present a robust, generalizable, yet intelligent polymer discovery framework, which synergizes diverse capabilities, including the in situ burning analyzer, virtual reaction generator, and material genomic model, to achieve results that surpass the sum of individual parts. Notably, the high-throughput analyzer created for the first time, grounded in multiple spectroscopic principles, enables in situ capturing of massive combustion intermediates; then, the created realistic apparatus transforming to the virtual reaction generator acquires exponentially more intermediate information; further, the proposed feature engineering tool, which embedded both polymer hierarchical structures and massive intermediate data, develops the generalizable genomic model with excellent universality (adapting over 20 kinds of polymers) and high accuracy (88.8%), succeeding discovering series of novel polymers. This emerging approach addresses the target polymer design for flame-retardant application and underscores a pivotal role in accelerating polymeric materials discovery.

14.
J Pharm Biomed Anal ; 248: 116288, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38981330

ABSTRACT

Germacrone and curdione are germacrane-type sesquiterpenoids that are widely distributed and have extensive pharmacological activities; they are the main constituents of 'Xing-Nao-Jing Injection' (XNJ). Studies on the metabolic features of germacrane-type sesquiterpenoids are limited. In this study, the metabolites of germacrone and curdione were characterized by UHPLC-Q-Exactive Oribitrap mass spectrometry after they were orally administered to rats. In total, 60 and 76 metabolites were found and preliminarily identified in rats administered germacrone and curdione, respectively, among which at least 123 potential new compounds were included. New metabolic reactions of germacrane-type sesquiterpenoids were identified, which included oxidation (+4 O and +5 O), ethylation, methyl-sulfinylation, vitamin C conjugation, and cysteine conjugation reactions. Among the 136 metabolites (including 113 oxidation metabolites, two glucuronidation, two methylation, nine methyl-sulfinylation, three ethylation, six cysteine conjugation, and one Vitamin C conjugation metabolites), 32 metabolites were detected in nine organs, and the stomach, intestine, liver, kidneys, and small intestine were the main organs for the distribution of these metabolites. All 136 metabolites were detected in urine and 64 of them were found in feces. The results of this study not only contribute to research on in vivo processes related to germacrane-type sesquiterpenoids but also provide a strong foundation for a better understanding of in vivo processes and the effective forms of germacrone, curdione, and XNJ.


Subject(s)
Drugs, Chinese Herbal , Rats, Sprague-Dawley , Sesquiterpenes, Germacrane , Animals , Sesquiterpenes, Germacrane/metabolism , Rats , Drugs, Chinese Herbal/pharmacokinetics , Drugs, Chinese Herbal/metabolism , Drugs, Chinese Herbal/administration & dosage , Male , Chromatography, High Pressure Liquid/methods , Tissue Distribution , Administration, Oral , Feces/chemistry
15.
Heliyon ; 10(12): e33106, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39022104

ABSTRACT

Background: In non-small cell lung cancer (NSCLC), lung adenocarcinoma (LUAD) is the most common subtype. RNA modification has become the frontier and hotspot of current tumor research. Results: In this study, 109 genes that regulate RNA modifications were identified according to The Cancer Genome Atlas (TCGA). A differential gene expression analysis identified 46 differentially expressed RNA modification regulatory genes (DERRGs). LUAD samples were stratified into two distinct clusters based on the expression of these DERRGs. A significant correlation was observed between these clusters and patient survival rates, as well as clinical features. Furthermore, a four-DERRG signature (EIF3B, HNRNPC, IGF2BP1, and METTL3) developed using LASSO regression. According to the calculated risk scores from this signature, LUAD patients were categorized into high-risk and low-risk groups. Patients in the low-risk group exhibited a more favorable prognosis. A prognostic nomogram was crafted, integrating the four-DERRGs signature with clinical parameters. The nomogram was revealed that OS, age, clinical stage, immune cell infiltration, and immune checkpoint molecule expression were significantly linked to the OS of LUAD. GSEA analysis found that the DERRGs were primarily regulated immune pathways. Conclusions: This study developed four DERRGs signatures and formulated a nomogram model for precise prognosis estimation in LUAD patients. The study's insights are instrumental for advancing diagnosis, prognosis, and therapeutic strategies for LUAD.

16.
J Cardiovasc Pharmacol ; 84(3): 370-382, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39027976

ABSTRACT

ABSTRACT: Quercetin is known for its antihypertensive effects. However, its role on hypertensive renal injury has not been fully elucidated. In this study, hematoxylin and eosin staining, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining, and Annexin V staining were used to assess the pathological changes and cell apoptosis in the renal tissues of angiotensin II (Ang II)-infused mice and Ang II-stimulated renal tubular epithelial cell line (NRK-52E). A variety of technologies, including network pharmacology, RNA-sequencing, immunohistochemistry, and Western blotting, were performed to investigate its underlying mechanisms. Network pharmacology analysis identified multiple potential candidate targets (including TP53, Bcl-2, and Bax) and enriched signaling pathways (including apoptosis and p53 signaling pathway). Quercetin treatment significantly alleviated the pathological changes in renal tissues of Ang II-infused mice and reversed 464 differentially expressed transcripts, as well as enriched several signaling pathways, including those related apoptosis and p53 pathway. Furthermore, quercetin treatment significantly inhibited the cell apoptosis in renal tissues of Ang II-infused mice and Ang II-stimulated NRK-52E cells. In addition, quercetin treatment inhibited the upregulation of p53, Bax, cleaved-caspase-9, and cleaved-caspase-3 protein expression and the downregulation of Bcl-2 protein expression in both renal tissue of Ang II-infused mice and Ang II-stimulated NRK-52E cells. Moreover, the molecular docking results indicated a potential binding interaction between quercetin and TP53. Quercetin treatment significantly attenuated hypertensive renal injury and cell apoptosis in renal tissues of Ang II-infused mice and Ang II-stimulated NRK-52E cells and by targeting p53 may be one of the potential underlying mechanisms.


Subject(s)
Angiotensin II , Antihypertensive Agents , Apoptosis , Disease Models, Animal , Mice, Inbred C57BL , Network Pharmacology , Quercetin , Signal Transduction , Tumor Suppressor Protein p53 , Quercetin/pharmacology , Animals , Apoptosis/drug effects , Cell Line , Male , Signal Transduction/drug effects , Antihypertensive Agents/pharmacology , Rats , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Gene Regulatory Networks/drug effects , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Kidney/pathology , Kidney/drug effects , Kidney/metabolism , RNA-Seq , Gene Expression Regulation/drug effects , Mice , Blood Pressure/drug effects , Hypertension, Renal/metabolism , Hypertension, Renal/drug therapy , Hypertension, Renal/pathology , Nephritis
18.
Org Lett ; 26(27): 5833-5838, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38934368

ABSTRACT

Reported herein is a practical, economical, and efficient construction of 3-alkylated quinoxalin-2(1H)-ones with alkyl carboxylic acids and alkyl iodides by quinoxalin-2(1H)-one excitation and cobaloxime catalysis. Primary, secondary, and tertiary alkyl iodides and carboxylic acids all could be efficiently transferred into target products with excellent functional group tolerance. Mechanism studies reveal that the quinoxalin-2(1H)-one derivatives could be directly excited and yield alkyl carbon radicals from alkyl carboxylic acids and alkyl iodides with the aid of the cobaloxime complex.

19.
Colloids Surf B Biointerfaces ; 240: 113998, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38823340

ABSTRACT

Photoactivated therapy has gradually emerged as a promising and rapid method for combating bacteria, aimed at overcoming the emergence of drug-resistant strains resulting from the inappropriate use of antibiotics and the subsequent health risks. In this work, we report the facile fabrication of Zn3[Fe(CN)6]/g-C3N4 nanocomposites (denoted as ZHF/g-C3N4) through the in-situ loading of zinc hexacyanoferrate nanospheres onto two-dimensional g-C3N4 sheets using a simple metal-organic frameworks construction method. The ZHF/g-C3N4 nanocomposite exhibits enhanced antibacterial activity through the synergistic combination of the excellent photothermal properties of ZHF and the photodynamic capabilities of g-C3N4. Under dual-light irradiation (420 nm + 808 nm NIR), the nanocomposites achieve remarkable bactericidal efficacy, eliminating 99.98% of Escherichia coli and 99.87% of Staphylococcus aureus within 10 minutes. Furthermore, in vivo animal experiments have demonstrated the outstanding capacity of the composite in promoting infected wound healing, achieving a remarkable wound closure rate of 99.22% after a 10-day treatment period. This study emphasizes the potential of the ZHF/g-C3N4 nanocomposite in effective antimicrobial applications, expanding the scope of synergistic photothermal/photodynamic therapy strategies.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Nanocomposites , Staphylococcus aureus , Wound Healing , Nanocomposites/chemistry , Wound Healing/drug effects , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Animals , Photochemotherapy , Microbial Sensitivity Tests , Mice , Sterilization/methods , Ferrocyanides/chemistry , Ferrocyanides/pharmacology , Particle Size , Zinc/chemistry , Zinc/pharmacology , Photothermal Therapy , Surface Properties , Nitrogen Compounds/chemistry , Nitrogen Compounds/pharmacology , Graphite
20.
Transl Cancer Res ; 13(5): 2108-2121, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38881926

ABSTRACT

Background: Breast cancer is a major public health concern. Proteomics enables identification of proteins with aberrant properties. Here, we identified proteins with abnormal expression levels in breast cancer tissues and systematically analyzed and validated the data to locate potential diagnostic and therapeutic targets. Methods: Protein expression level in breast cancer tissues and para-carcinoma tissues were detected by Isobaric Tags for Relative and Absolute Quantification (iTRAQ) technology and further screened through Gene Expression Profiling Interactive Analysis (GEPIA) database. Cellular components, protein domain and Reactome pathway analysis were performed to screen functional targets. Abnormal expression levels of functional targets were validated by Oncomine database, quantitative real time polymerase chain reaction (qRT-PCR) and proteomics detection. Protein correlation analysis was performed to explain the abnormal expression levels of potential targets in breast cancer. Results: Overall, 207 and 207 proteins were up- and down-regulated, respectively, in breast cancer tissues, and approximately 50% were also detected in the GEPIA database. The overlapping proteins were mainly extracellular proteins containing epidermal growth factor-like domain in leukocyte adhesion molecule (EGF-Lam) domain and enriched in laminin interaction pathway. Moreover, the downregulated laminin interaction proteins could be functional targets, which were also validated through Oncomine-Richardson and Oncomine-Curtis database. However, the lower expression level of laminin interaction proteins only fit for luminal breast cancer cells with no or low metastasis ability because the proteins achieved higher expression level in more invasive claudin-low breast cancer cells. In addition, when compared with corresponding in situ carcinoma tissues, above-mentioned proteins also showed higher expression levels in invasive carcinoma tissues. Finally, we have revealed the negative correlation between the laminin interaction proteins and the claudins. Conclusions: The laminin interaction protein, especially for laminins with ß1 and γ1 subunits and their integrin receptors with α1 and α6 subunits, showed lower expression levels in luminal breast cancer with no or lower metastatic ability, but showed higher expression levels in claudin-low breast cancer with higher metastatic ability; and their higher expression could be related to the low claudin expression.

SELECTION OF CITATIONS
SEARCH DETAIL