Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 12(22): 5332-5338, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34062057

ABSTRACT

Broad impact in the research community may be anticipated when a material's properties are capable of being manipulated artificially. Such a possibility has been explored here in the FAPbI3 perovskite structure of perovskite solar cells, which involves undesirable phase transition at working temperature, despite many attempts to resolve the issue. Essential steps have been taken here toward solving this problem by adopting an opposite strategy to incorporate the water molecules into the perovskite structure under the current materials framework by new structural physics maneuvering. The secondary bonding of the perovskite structure has been relocated, which altered the microstructure to remove the internal strain that caused the phase transition, resulting in not only a 10-fold enhancement in the moisture/structure stability but also a bandgap comparable to that of the favored α-FAPbI3. All this opens an unprecedented avenue in perovskite research, which will hopefully be of intrinsic interest to the broad materials research community as well.

2.
Anal Chem ; 92(15): 10777-10782, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32649181

ABSTRACT

The saturation of nonenzymatic blood glucose sensors at lower than normal blood glucose levels has blocked their practical applications. The mechanistic understanding of the saturation, however, has long been under debate. Employing cyclic voltammetry, amperometry, and FTIR with various electrolytes of varying concentrations, we were able to uproot the saturation cause. It was found to be related to the hydroxide ion concentration, which must be 11 times greater than that of the glucose concentration, contrary to the prior understanding. Together with the satisfactory sensitivity at high pH, nonenzymatic blood glucose sensing has finally been achieved, eliminating the usual problem of electrochemical current saturation as well as the need for enzyme found in the present technology.


Subject(s)
Blood Chemical Analysis/methods , Blood Glucose/analysis , Blood Chemical Analysis/instrumentation , Electrochemistry , Electrodes , Hydrogen-Ion Concentration , Limit of Detection , Spectroscopy, Fourier Transform Infrared
3.
Nano Lett ; 20(5): 3864-3871, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32353241

ABSTRACT

The commonly employed formamidinium (FA)-containing perovskite solar cells (PSCs) exhibit a severe phase instability problem, thereby limiting their commercial applications. Here, both phase stability and energy efficiency of FA-based PSCs were improved by treating the perovskite surface with pyrrolidinium hydroiodide (PyI) salts, resulting in a 1D perovskite structure (PyPbI3), stacked on the original 3D perovskite. By employing in situ XRD measurements, we revealed that the temperature-dependent phase transition activation barrier was enhanced after forming the 1D/3D structure, resulting in a prolonged transition time by 30-40-fold. From the first-principle calculations, we found the thermodynamic energy difference between two phases reduced from -0.16 to -0.04 eV after the stacking of 1D PyPbI3, offering additional lifetime improvement. Moreover, the champion 1D/3D bilayer PSC exhibits a boosted power conversion efficiency of 19.62%, versus 18.21% of the control. Such 1D/3D bilayer structure may be employed in PSCs to enhance their phase stability and photovoltaic performance.

4.
J Phys Chem Lett ; 10(22): 7245-7250, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31689109

ABSTRACT

The moisture instability of organic-inorganic hybrid perovskite solar cells has been a major obstacle to the commercialization, calling for mechanistic understanding of the degradation process, which has been under debate. Here we present a surprising discovery that the degradation is actually reversible, via in situ observation of X-ray diffraction, supported by FTIR and SEM. To isolate the hydrogen bond effect, water was replaced by methanol during the in situ experiment, revealing the decomposition to be initiated by the breakdown of N-H-I hydrogen bonds. This is followed by the step of organic iodide hydrolyzing, which can be inhibited in the neutral environment, making the whole process reversible under variable pH.

5.
Chem Commun (Camb) ; 55(22): 3251-3253, 2019 Mar 12.
Article in English | MEDLINE | ID: mdl-30810121

ABSTRACT

The crystal structure of a new perovskite material, (C4H8NH2)PbI3 was determined and illustrated by single crystal X-ray diffraction. UV spectra, photoluminescence and XRD results show it is a promising alternative to hybrid organic-inorganic perovskites due to it's good water resistance and suitable bandgap.

SELECTION OF CITATIONS
SEARCH DETAIL
...