Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 205
Filter
1.
Food Funct ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967456

ABSTRACT

Cantharellus cibarius (CC) is a culinary mushroom with significant commercial potential due to its diverse components and bioactive functions. CC is rich in carbohydrates, proteins, minerals, vitamins, and aroma compounds while being low in fat and calories. Moreover, CC contains an abundance of bioactive substances including phenolic compounds, vitamin precursors, and indole derivatives. Numerous studies have claimed that CC has diverse functions such as antioxidant, antimicrobial, immunoregulation, anti-inflammatory, antitumor, neuroprotective, antidiabetic, and prebiotic effects in in vivo or in vitro settings. In addition, a variety of thermal, physical, chemical, and biological treatment methods have been investigated for the processing and preservation of CC. Consequently, this study aims to present a comprehensive review of the chemical composition, health benefits, and processing techniques of CC. Furthermore, the issue of heavy metal accumulation in CC has been indicated and discussed. The study highlights the potential of CC as a functional food in the future while providing valuable insights for future research and identifying areas requiring further investigation.

2.
J Agric Food Chem ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042786

ABSTRACT

Chitin and chitosan are mostly derived from the exoskeletons of crustaceans, insects, and fungi. Chitin is the second most abundant biopolymer after cellulose, and it is a fibrous polysaccharide which resists enzymatic degradation in the stomach but undergoes microbial fermentation in the colon, producing beneficial metabolites. Chitosan, which is more soluble in the alkaline small intestine, is more susceptible to enzymatic action. Both biopolymers show limited absorption into the bloodstream, with smaller particles exhibiting better bioavailability. The health effects include anti-inflammatory properties, potential in immune system modulation, impacts on cholesterol levels, and antimicrobial effects, with a specific focus on implications for gut health. Chitin and chitosan exhibit anti-inflammatory properties by interacting with immune cells, influencing cytokine production, and modulating immune responses, which may benefit conditions characterized by chronic inflammation. These biopolymers can impact cholesterol levels by binding to dietary fats and reducing lipid absorption. Additionally, their antimicrobial properties contribute to gut health by controlling harmful pathogens and promoting beneficial gut microbiota. This review explores the extensive health benefits and applications of chitin and chitosan, providing a detailed examination of their chemical compositions, dietary sources, and applications, and critically assessing their health-promoting effects in the context of human well-being.

3.
Ageing Res Rev ; 99: 102416, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39002644

ABSTRACT

Alzheimer's disease (AD) is a fatal neurodegenerative disease in which senile plaques and neurofibrillary tangles are crucially involved in its physiological and pathophysiological processes. Growing animal and clinical studies have suggested that AD is also comorbid with some metabolic diseases, including type 2 diabetes mellitus (T2DM), and therefore, it is often considered brain diabetes. AD and T2DM share multiple molecular and biochemical mechanisms, including impaired insulin signaling, oxidative stress, gut microbiota dysbiosis, and mitochondrial dysfunction. In this review article, we mainly introduce oxidative stress and mitochondrial dysfunction and explain their role and the underlying molecular mechanism in T2DM and AD pathogenesis; then, according to the current literature, we comprehensively evaluate the possibility of regulating oxidative homeostasis and mitochondrial function as therapeutics against AD. Furthermore, considering dietary polyphenols' antioxidative and antidiabetic properties, the strategies for applying them as potential therapeutical interventions in patients with AD symptoms are assessed.


Subject(s)
Alzheimer Disease , Diabetes Mellitus, Type 2 , Mitochondria , Oxidative Stress , Polyphenols , Signal Transduction , Alzheimer Disease/metabolism , Alzheimer Disease/diet therapy , Alzheimer Disease/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/diet therapy , Oxidative Stress/drug effects , Humans , Polyphenols/pharmacology , Polyphenols/therapeutic use , Signal Transduction/drug effects , Signal Transduction/physiology , Animals , Mitochondria/metabolism , Mitochondria/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Antioxidants/therapeutic use
4.
Phytomedicine ; 132: 155875, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39029136

ABSTRACT

BACKGROUND: Despite extensive efforts, empirical techniques have yielded limited progress in finding effective anticancer medications, with chemotherapy drugs often associated with drug resistance and serious side effects. Thus, there is a pressing need for novel agents with minimal adverse effects. Natural substances, widely used in treating various illnesses, including cancer, offer promising alternatives. Among these, mushrooms, rich in low molecular weight secondary metabolites, polysaccharides, and polysaccharide-protein complexes, have gained attention for their potential anticancer properties. RESULTS: Mushroom polysaccharides have been found to impede oncogenesis and tumor metastasis by directly inhibiting tumor cell growth and indirectly enhancing immune system functions. These polysaccharides engage with numerous cell signaling pathways that influence cancer development and progression. They affect pathways that control cell survival, growth, and differentiation, and they also play a role in adjusting the tumor immune microenvironment. CONCLUSION: This review highlights the potential of mushroom polysaccharides as promising anticancer agents due to their ability to modulate cell signaling pathways crucial for cancer development. Understanding the mechanisms underlying their effects on these pathways is essential for harnessing their therapeutic potential and developing novel strategies for cancer treatment.

5.
Life (Basel) ; 14(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38929640

ABSTRACT

The global prevalence of obesity is a pressing health issue, increasing the medical burden and posing significant health risks to humans. The side effects and complications associated with conventional medication and surgery have spurred the search for anti-obesity drugs from plant resources. Previous studies have suggested that Artemisiae argyi Folium (Aiye) water extracts could inhibit pancreatic lipase activities, control body weight increase, and improve the plasma lipids profile. However, the exact components and mechanisms were not precisely understood. Therefore, this research aims to identify the chemical profile of Aiye and provide a comprehensive prediction of its anti-obesity mechanisms. The water extract of Aiye was subjected to LC-MS analysis, which identified 30 phenolics. The anti-obesity mechanisms of these phenolics were then predicted, employing network pharmacology and molecular docking. Among the 30 phenolics, 21 passed the drug-likeness screening and exhibited 486 anti-obesity targets. The enrichment analysis revealed that these phenolics may combat obesity through PI3K-Akt signaling and MAPK, prolactin, and cAMP signaling pathways. Eight phenolics and seven central targets were selected for molecular docking, and 45 out of 56 docking had a binding affinity of less than -5 kcal/mol. This research has indicated the potential therapy targets and signaling pathways of Aiye in combating obesity.

6.
Environ Sci Technol ; 58(26): 11649-11660, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38872439

ABSTRACT

Brominated byproducts and toxicity generation are critical issues for ozone application to wastewater containing bromide. This study demonstrated that ultraviolet/ozone (UV/O3, 100 mJ/cm2, 1 mg-O3/mg-DOC) reduced the cytotoxicity of wastewater from 14.2 mg of pentol/L produced by ozonation to 4.3 mg of pentol/L (1 mg/L bromide, pH 7.0). The genotoxicity was also reduced from 1.65 to 0.17 µg-4-NQO/L by UV/O3. Compared with that of O3 alone, adsorbable organic bromine was reduced from 25.8 to 5.3 µg/L by UV/O3, but bromate increased from 32.9 to 71.4 µg/L. The UV/O3 process enhanced the removal of pre-existing precursors (highly unsaturated and phenolic compounds and poly aromatic hydrocarbons), while new precursors were generated, yet the combined effect of UV/O3 on precursors did not result in a significant change in toxicity. Instead, UV radiation inhibited HOBr concentration through both rapid O3 decomposition to reduce HOBr production and decomposition of the formed HOBr, thus suppressing the AOBr formation. However, the hydroxyl radical-dominated pathway in UV/O3 led to a significant increase of bromate. Considering both organic bromine and bromate, the UV/O3 process effectively controlled both cytotoxicity and genotoxicity of wastewater to mammalian cells, even though an emphasis should be also placed on managing elevated bromate. Futhermore, other end points are needed to evaluate the toxicity outcomes of the UV/O3 process.


Subject(s)
Bromine , Wastewater , Bromine/chemistry , Bromine/toxicity , Bromates/chemistry , Photochemical Processes , Ultraviolet Rays , Ozone/chemistry , Water Purification/methods , Wastewater/toxicity , Mammals , Animals , CHO Cells , Cricetulus
7.
Food Sci Nutr ; 12(5): 3612-3627, 2024 May.
Article in English | MEDLINE | ID: mdl-38726452

ABSTRACT

In contrast to its widespread traditional and popular culinary use to reduce weight, Vigna angularis (adzuki beans) was not subjected to sufficient scientific scrutiny. Particularly, its saponins whose role was never investigated before to unveil the beans' antidiabetic and anti-obesity effects. Four vital pancreatic and intestinal carbohydrate enzymes were selected to assess the potency of the triterpenoidal saponins of V. angularis to bind and activate these proteins through high-precision molecular modeling and dynamics mechanisms with accurate molecular mechanics Generalized Born Surface Area (MMGBSA) energy calculations; thus, recognizing their anti-obesity potential. Our results showed that adzukisaponin VI and adzukisaponin IV were the best compounds in the α-amylase and α-glucosidase enzymatic grooves, respectively. Adzukisaponin VI and angulasaponin C were the best fitting in the N-termini of sucrase-isomaltose (SI) enzyme, and angulasaponin C was the best scoring compound in maltase-glucoamylase C-termini. All of them outperformed the standard drug acarbose. These compounds in their protein complexes were selected to undergo molecular simulations of the drug-bound protein compared to the apo-protein through 100 ns, which confirmed the consistency of binding to the key amino acid residues in the four enzyme pockets with the least propensity of unfolding. Detailed analysis is given of the different polar and hydrophobic binding interactions of docked compounds. While maltase-adzukisaponin VI complex scored the lowest MMGBSA free energy of -67.77 Kcal/mol, α-amylase complex with angulasaponin B revealed the free binding energy of -74.18 Kcal/mol with a dominance of van der Waals energy (ΔEVDW) and the least change from the start to the end of the simulation time. This study will direct researchers to the significance of isolating the pure adzuki saponin components to conduct future in vitro and in vivo experimental works and even clinical trials.

8.
Mar Drugs ; 22(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38786606

ABSTRACT

In regions reliant on fisheries for livelihoods, a significant number of fish by-products are generated annually due to processing. These discarded parts contain valuable biological resources, such as proteins, fish oils, and trace elements, thus holding enormous potential for reutilization. In recent years, fish by-product proteins have been widely utilized in skincare products due to their rich collagen content, biosafety, and biocompatibility. This review summarizes the research into and applications of fish by-product proteins in skin health, including alleviating oxidative stress and skin inflammation, reducing DNA damage, mitigating melanin production, improving skin hydration, slowing skin matrix degradation, and promoting synthesis. Additionally, the possibility of improving skin health by improving the abundance of gut microbiota is also discussed. This review underscores the importance of fish by-product proteins in the fisheries, food processing, cosmetics, and biomedical industries.


Subject(s)
Fish Proteins , Skin , Animals , Humans , Skin/metabolism , Skin/drug effects , Fish Proteins/metabolism , Fishes/metabolism , Cosmetics , Oxidative Stress/drug effects
9.
BMC Med Imaging ; 24(1): 78, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570748

ABSTRACT

BACKGROUND: To investigate the feasibility of Diffusion Kurtosis Imaging (DKI) in assessing renal interstitial fibrosis induced by hyperuricemia. METHODS: A hyperuricemia rat model was established, and the rats were randomly split into the hyperuricemia (HUA), allopurinol (AP), and AP + empagliflozin (AP + EM) groups (n = 19 per group). Also, the normal rats were selected as controls (CON, n = 19). DKI was performed before treatment (baseline) and on days 1, 3, 5, 7, and 9 days after treatment. The DKI indicators, including mean kurtosis (MK), fractional anisotropy (FA), and mean diffusivity (MD) of the cortex (CO), outer stripe of the outer medulla (OS), and inner stripe of the outer medulla (IS) were acquired. Additionally, hematoxylin and eosin (H&E) staining, Masson trichrome staining, and nuclear factor kappa B (NF-κB) immunostaining were used to reveal renal histopathological changes at baseline, 1, 5, and 9 days after treatment. RESULTS: The HUA, AP, and AP + EM group MKOS and MKIS values gradually increased during this study. The HUA group exhibited the highest MK value in outer medulla. Except for the CON group, all the groups showed a decreasing trend in the FA and MD values of outer medulla. The HUA group exhibited the lowest FA and MD values. The MKOS and MKIS values were positively correlated with Masson's trichrome staining results (r = 0.687, P < 0.001 and r = 0.604, P = 0.001, respectively). The MDOS and FAIS were negatively correlated with Masson's trichrome staining (r = -626, P < 0.0014 and r = -0.468, P = 0.01, respectively). CONCLUSION: DKI may be a non-invasive method for monitoring renal interstitial fibrosis induced by hyperuricemia.


Subject(s)
Hyperuricemia , Rats , Animals , Hyperuricemia/diagnostic imaging , Kidney/diagnostic imaging , Diffusion Tensor Imaging/methods , Diffusion Magnetic Resonance Imaging/methods , Fibrosis
10.
J Agric Food Chem ; 72(18): 10570-10578, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38652024

ABSTRACT

Amadori rearrangement products (ARPs) are gaining more attention for their potential usage in the food flavor industry. Peptide-ARPs have been studied, but pyrazinones that were theoretically found in the Maillard reaction (MR) have not been reported to be formed from small peptide-ARPs. This study found four pyrazinones: 1-methyl-, 1,5-dimethyl-, 1,6-dimethyl-, and 1,5,6-trimethyl-2(1H)-pyrazinones in both MR and ARP systems. It was the first time 1-methyl-2(1H)-pyrazinone was reported, along with 1,5-dimethyl- and 1,5,6-trimethyl-2(1H)-pyrazinones being purified and analyzed by nuclear magnetic resonance for the first time. The primary formation routes of the pyrazinones were also proven as the reaction between diglycine and α-dicarbonyls, including glyoxal, methylglyoxal, and diacetyl. The pyrazinones, especially 1,5-dimethyl-2(1H)-pyrazinone, have strong fluorescence intensity, which may be the reason for the increase of fluorescence intensity in MR besides α-dicarbonyls. Cytotoxicity analysis showed that both Gly-/Digly-/Trigly-ARP and the three pyrazinones [1-methyl-, 1,5-dimethyl-, and 1,5,6-trimethyl-2(1H)-pyrazinones] showed no prominent cytotoxicity in the HepG2 cell line below 100 µg/mL, further suggesting that ARPs or pyrazinones could be used as flavor additives in the future. Further research should be conducted to investigate pyrazinones in various systems, especially the peptide-ARPs, which are ubiquitous in real food systems.


Subject(s)
Maillard Reaction , Pyrazines , Pyrazines/chemistry , Humans , Flavoring Agents/chemistry , Volatile Organic Compounds/chemistry , Peptides/chemistry , Glyoxal/chemistry
11.
Plants (Basel) ; 13(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38674532

ABSTRACT

Obesity has emerged as a significant health concern, as it is a disease linked to metabolic disorders in the body and is characterized by the excessive accumulation of lipids. As a plant-derived food, Platycodon grandiflorum (PG) was reported by many studies, indicating that the saponins from PG can improve obesity effectively. However, the anti-obesity saponins from PG and its anti-obesity mechanisms have not been fully identified. This study identified the active saponins and their molecular targets for treating obesity. The TCMSP database was used to obtain information on 18 saponins in PG. The anti-obesity target of the PG saponins was 115 targets and 44 core targets. GO and KEGG analyses using 44 core anti-obesity genes and targets of PG-active saponins screened from GeneCards, OMIM, Drugbank, and DisGeNet showed that the PI3K-Akt pathway, the JAK-STAT pathway, and the MAPK pathway were the major pathways involved in the anti-obesity effects of PG saponins. BIOVIA Discovery Studio Visualizer and AutoDock Vina were used to perform molecular docking and process the molecular docking results. The molecular docking results showed that the active saponins of PG could bind to the major therapeutic obesity targets to play an obesity-inhibitory role. The results of this study laid the foundation for further research on the anti-obesity saponins in PG and their anti-obesity mechanism and provided a new direction for the development of functional plant-derived food. This research studied the molecular mechanism of PG saponins combating obesity through various signaling pathways, and prosapogenin D can be used to develop as a new potential anti-obesity drug.

12.
Food Chem X ; 22: 101294, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38550887

ABSTRACT

To accurately, efficiently, and environmentally prepare carrageenan oligosaccharides, we have developed a method that uses H2O2 and TiO2 as catalysts for the photodegradation of κ-carrageenan (KC). The photodegradation of KC was monitored using various amounts of TiO2 and H2O2 and different concentrations of KC via HPLC and it could decrease the average molecular weight of KC into 1.6 kDa within 2 h. Further research under optimal conditions. As a control, the effects of UV, UV/H2O2, UV/TiO2, and H2O2/TiO2 treatments were studied. In contrast, UV/H2O2/TiO2 treatments showed a coordinated effect. The effect of degradation on the structure of KC was investigated by FT-IR, XRD, and there was no obvious remotion of sulfate groups. Furthermore, oral administration of KCO prolonged the healthy lifespan of nematodes induced by ultraviolet stress and significantly regulated oxidative stress. This study suggests that the precise preparation and application of KCO may be beneficial.

13.
J Fungi (Basel) ; 10(3)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38535223

ABSTRACT

Aging is a complex biological process that is influenced by both intrinsic and extrinsic factors. Recently, it has been discovered that reactive oxygen species can accelerate the aging process, leading to an increased incidence of age-related diseases that are characteristic of aging. This review aims to discuss the potential of mushrooms as a dietary intervention for anti-aging, focusing on their nutritional perspective. Mushrooms contain various bioactive compounds, including carbohydrates, bioactive proteins, fungal lipids, and phenolic compounds. These compounds have shown promising effectiveness in combating skin aging and age-related diseases. In vitro and in vivo studies have demonstrated that treatments with mushrooms or their extracts can significantly extend lifespan and improve health span. Furthermore, studies have aimed to elucidate the precise cellular and molecular mechanisms of action and the structure-activity relationship of mushroom bioactive compounds. These findings provide a strong basis for further research, including human clinical trials and nutritional investigations, to explore the potential benefits of mushrooms in real-life anti-aging practices. By exploring the anti-aging effects of mushrooms, this review aims to provide valuable insights that can contribute to the development of broader strategies for healthy aging.

14.
Food Res Int ; 180: 114048, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38395565

ABSTRACT

This study compares the physicochemical and prebiotic properties of inulin isolated from five botanical sources. The average degree of polymerization (DP) for inulin ranged from 5.00 to 13.33. Notably, inulin from Dahlia tubers (DP = 13) and Platycodonis Radix (DP = 8) demonstrated granular, clustered morphology under SEM, semi-crystalline structures via X-ray diffraction, and exhibited shear-thinning behaviors from shear rate 1 s-1 to 500 s-1. In contrast, inulin from Jerusalem artichoke (DP = 5), chicory root (DP = 7), and Asparagi Radix (DP = 5) showcased rough flake morphologies under SEM, amorphous structures in X-ray patterns, and similar shear-thinning behaviors. All inulin types showed acid stability at pH levels below 2.0, with a reducing sugar conversion ratio (RRS) under 1 %. Furthermore, the isolated inulin from the different sources presented prebiotic capacity when added as a sole carbon source in the culture media of the probiotics Lactobacillus paracasei and Bifidobacterium longum. This study provides the properties of inulin from various sources, thereby offering a reference for the selection of appropriate inulin in industrial applications based on the desired characteristics of the final product.


Subject(s)
Bifidobacterium longum , Helianthus , Probiotics , Inulin/chemistry , Prebiotics
15.
Foods ; 13(4)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38397600

ABSTRACT

Pickering emulsions (PEs) have been regarded as an effective approach to sustaining and preserving the bioactivities of essential oils. The aim of this research is to prepare a PE stabilized by chitosan/alginate nanoparticles (CS-SA NPs) for the encapsulation and stabilization of D-limonene. In this work, the influence of calcium ions (Ca2+) on the morphology and interaction of nanoparticles was studied, and then the preparation technology of CS-SA/Ca2+ NPs was optimized. The results showed that the presence of Ca2+ reduced the size of the nanoparticles and made them assume a spherical structure. In addition, under the conditions of 0.2 mg/mL CaCl2, 0.6 mg/mL SA, and 0.4 mg/mL CS, the CS-SA/Ca2+ NPs had the smallest size (274 ± 2.51 nm) and high stability (-49 ± 0.69 mV). Secondly, the PE was prepared by emulsifying D-limonene with CS-SA/Ca2+ NPs, and the NP concentrations and homogenization speeds were optimized. The results showed that the small droplet size PE could be prepared with 2 mg/mL NP and a homogenization speed of 20,000 r/min, and it had excellent antibacterial and antioxidant activities. Most importantly, the emulsion showed higher activity, higher resistance to ultraviolet (UV) and a higher temperature than free D-limonene. This research provides a feasible solution for the encapsulation, protection and delivery of essential oils.

16.
Food Res Int ; 179: 114011, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38342519

ABSTRACT

This comprehensive review article delves into the complex world of natural edible pigments, with a primary focus on their stability and the factors that influence them. The study primarily explores four classes of pigments: anthocyanins, betalains, chlorophylls and carotenoids by investigating both their intrinsic and extrinsic stability factors. The review examines factors affecting the stability of anthocyanins which act as intrinsic factors like their structure, intermolecular and intramolecular interactions, copigmentation, and self-association as well as extrinsic factors such as temperature, light exposure, metal ions, and enzymatic activities. The scrutiny extends to betalains which are nitrogen-based pigments, and delves into intrinsic factors like chemical composition and glycosylation, as well as extrinsic factors like temperature, light exposure, and oxygen levels affecting for their stability. Carotenoids are analyzed concerning their intrinsic and extrinsic stability factors. The article emphasizes the role of chemical structure, isomerization, and copigmentation as intrinsic factors and discusses how light, temperature, oxygen, and moisture levels influence carotenoid stability. The impacts of food processing methods on carotenoid preservation are explored by offering guidance on maximizing retention and nutritional value. Chlorophyll is examined for its sensitivity to external factors like light, temperature, oxygen exposure, pH, metal ions, enzymatic actions, and the food matrix composition. In conclusion, this review article provides a comprehensive exploration of the stability of natural edible pigments, highlighting the intricate interplay of intrinsic and extrinsic factors. In addition, it is important to note that all the references cited in this review article are within the past five years, ensuring the most up-to-date and relevant sources have been considered in the analysis.


Subject(s)
Anthocyanins , Food, Organic , Anthocyanins/analysis , Food, Organic/analysis , Carotenoids/chemistry , Betalains/chemistry , Chlorophyll/chemistry , Ions , Oxygen
17.
Phytother Res ; 38(4): 2007-2022, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38372176

ABSTRACT

This review highlights the increasing interest in one of the natural compounds called saponins, for their potential therapeutic applications in addressing inflammation which is a key factor in various chronic diseases. It delves into the molecular mechanisms responsible for the anti-inflammatory effects of these amphiphilic compounds, prevalent in plant-based foods and marine organisms. Their structures vary with soap-like properties influencing historical uses in traditional medicine and sparking renewed scientific interest. Recent research focuses on their potential in chronic inflammatory diseases, unveiling molecular actions such as NF-κB and MAPK pathway regulation and COX/LOX enzyme inhibition. Saponin-containing sources like Panax ginseng and soybeans suggest novel anti-inflammatory therapies. The review explores their emerging role in shaping the gut microbiome, influencing composition and activity, and contributing to anti-inflammatory effects. Specific examples, such as Panax notoginseng and Gynostemma pentaphyllum, illustrate the intricate relationship between saponins, the gut microbiome, and their collective impact on immune regulation and metabolic health. Despite promising findings, the review emphasizes the need for further research to comprehend the mechanisms behind anti-inflammatory effects and their interactions with the gut microbiome, underscoring the crucial role of a balanced gut microbiome for optimal health and positioning saponins as potential dietary interventions for managing chronic inflammatory conditions.


Subject(s)
Panax notoginseng , Saponins , Humans , Saponins/therapeutic use , Panax notoginseng/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy , NF-kappa B
18.
Food Funct ; 15(6): 2996-3007, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38411214

ABSTRACT

Resveratrol has profound benefits against diabetes. However, whether its methylated derivative 3,4',5-trimethoxy-trans-stilbene (3,4',5-TMS) also plays a protective role in glucose metabolism is not characterized. We aimed to study the anti-diabetic effects of 3,4',5-TMS in vitro and in vivo. Insulin-resistant HepG2 cells (IR-HepG2) were induced by high glucose plus dexamethasone whilst six-week-old male C57BL/6J mice received a 60 kcal% fat diet for 14 weeks to establish an obese diabetic model. 3,4',5-TMS did not reduce the cell viability of IR-HepG2 cells at concentrations of 0.5 and 1 µM, which enhanced the capability of glycogen synthesis and glucose consumption in IR-HepG2 cells. Four-week oral administration of 3,4',5-TMS at 10 mg kg-1 day-1 ameliorated insulin sensitivity and glucose tolerance of diet-induced obese (DIO) mice. 3,4',5-TMS activated the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway by inhibiting phosphorylation of insulin receptor substrate (IRS)-1 at Ser307 and increasing the protein levels of IRS-1 and IRS-2 to restore the insulin signaling pathway in diabetes. 3,4',5-TMS also upregulated the phosphorylation of glycogen synthase kinase 3 beta (GSK3ß) at Ser9. 3,4',5-TMS suppressed oxidative stress by increasing the protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and NAD(P)H : quinone oxidoreductase 1 (NQO1) and antioxidant enzyme activity. In summary, 3,4',5-TMS alleviated hepatic insulin resistance in vitro and in vivo, by the activation of the insulin signaling pathway, accomplished by the suppression of oxidative stress.


Subject(s)
Diabetes Mellitus , Insulin Resistance , Stilbenes , Animals , Mice , Male , Insulin/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Mice, Obese , Phosphatidylinositol 3-Kinases/metabolism , Mice, Inbred C57BL , Signal Transduction , Glucose/metabolism , Oxidative Stress , Antioxidants/pharmacology , Obesity/drug therapy
19.
Food Funct ; 15(2): 481-492, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38197139

ABSTRACT

Studies have shown that dietary polysaccharides, which are widely present in natural foods, have an important impact on the intestinal mucosal barrier. Dietary polysaccharides can maintain the intestinal barrier function through multiple mechanisms. The intestinal barrier is composed of mechanical, chemical, immune, and biological barriers, and dietary polysaccharides, as a bioactive component, can promote and regulate these four barriers. Dietary polysaccharides can enhance the expression of tight junction proteins and mucins such as occludin-1 and zonula occludens-1 (ZO-1) between intestinal epithelial cells, inhibit inflammatory response and oxidative stress, increase the growth of beneficial bacteria, produce beneficial metabolites such as short chain fatty acids (SCFAs), and promote the proliferation and metabolism of immune cells. Given the critical role of the intestinal mucosal system in health and disease, the protective effects of dietary polysaccharides may be potentially valuable for the prevention and treatment of gut-related diseases. Therefore, it is of great significance to further study the mechanism and application prospects of the intestinal mucosal barrier derived from plant, animal, fungal and bacterial sources.


Subject(s)
Intestinal Mucosa , Polysaccharides , Animals , Polysaccharides/pharmacology , Polysaccharides/metabolism , Intestinal Mucosa/metabolism , Epithelial Cells , Tight Junction Proteins/genetics , Tight Junction Proteins/metabolism , Occludin/genetics , Occludin/metabolism
20.
J Agric Food Chem ; 72(1): 657-669, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38109376

ABSTRACT

Amadori rearrangement products (ARPs), as intermediates of the Maillard reaction (MR), are potential natural flavor additives but there is a lack of investigation especially in oligopeptide-ARPs. This study for the first time conducted a systematic analysis in comparing ARPs of glycine, diglycine, triglycine, and glucose to corresponding classic MR systems, including production, stability, and flavor analysis. The ARPs were effectively produced by prelyophilization with heating at 70 °C for 60 min and purified to 96% by a two-step purification method. Correlated with the stability order of amino compounds (glycine > diglycine > triglycine), the stability order of ARPs was Gly-ARP > Digly-ARP ≈ Trigly-ARP. In a negative correlation with heating temperature and time, ARPs were less stable than original amino compounds at high temperatures (100, 130, and 160 °C). ARPs exhibited better flavor formation ability in pyrazines and furans than MR systems, with similar flavor compositions but different preferences. Diglycine- and triglycine-ARPs exhibited better flavor formation efficiency than glycine-ARP. Heating temperature and time, initial pH, and carbon chain length were found to be the parameters that affect the stability and flavor formation of ARPs. This study suggested that ARPs, especially peptide-ARPs, have great potential for usage as food flavor additives in the future.


Subject(s)
Glycine , Glycylglycine , Glycine/chemistry , Food Additives , Flavoring Agents/chemistry , Glucose/chemistry , Feasibility Studies , Oligopeptides , Maillard Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...