Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Biosens Bioelectron ; 197: 113772, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34768067

ABSTRACT

An outstanding dual-labeling ratiometric electrochemical biosensor based on isothermal strand displacement polymerization reaction (ISDPR) for highly sensitive and selective detection of mecA gene has been proposed. Concretely, in the presence of mecA gene, the addition of methylene blue (MB)-labeled primer and polymerase induced recycling amplification to change the structure of the ferrocene (Fc)-labeled hairpin probe, thereby releasing abundant target gene to realize the signal amplification and dual-signal output. Through this process, the electrochemical responses of Fc (IFc) and MB (IMB) were both substantially reduced and increased proportionally, ensuring that the value of IMB/IFc can accurately reflect the true detection level of mecA gene. Benefiting from the "signal-on/off" strategy, the fabricated biosensor exhibited outstanding sequence specificity to discriminate mismatched mecA gene, which verified to be 2.72 times that of single-label detection for perfect match/single base mismatch (PM/MM) discrimination ratio. This strategy effectively integrated the advantages of signal amplification and ratiometric modes, making the biosensor exhibit a broad working range with 10 fM - 3000 pM and a limit of detection (LOD) with 3.33 fM (S/N = 3). Moreover, the proposed biosensor has good feasibility for mecA gene determination in water samples due to acceptable recoveries (95-115%) and repeatability relative standard deviations (RSD) value of 4%. This will provide a powerful sensing platform for improving accuracy and decreasing background signal of sensor for ARGs screening in environmental monitoring.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Gold , Limit of Detection , Polymerization
2.
Sheng Wu Gong Cheng Xue Bao ; 36(11): 2313-2326, 2020 Nov 25.
Article in Chinese | MEDLINE | ID: mdl-33244926

ABSTRACT

Glycosylation is one of the common post-translational modifications of proteins to regulate the ability of tumor invasion, metastasis and tumor heterogeneity by interacting with glycan-binding proteins such as lectins and antibodies. Glycan microarray can be constructed by chemical synthesis, chemical-enzyme synthesis or natural glycan releasing. Glycan microarray is an essential analytical tool to discover the interaction between glycan and its binding proteins. Here we summarize the standard techniques to construct glycan microarray for the application in cancer vaccine, monoclonal antibody and diagnostic markers.


Subject(s)
Neoplasms , Polysaccharides , Antibodies, Monoclonal , Glycosylation , Lectins/metabolism , Microarray Analysis
3.
J Biochem ; 167(5): 513-524, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32275316

ABSTRACT

This study aims to determine whether miR-1271-5p inhibits cell proliferation and enhances the radiosensitivity by targeting cyclin-dependent kinase 1 (CDK1) in hepatocellular carcinoma (HCC). Its expression levels in the HCC cell lines were significantly lower than those in normal human liver cell line. Bioinformatics analysis indicated CDK1 was a potential target of miR-1271-5p. Dual-Luciferase Reporter Assay confirmed that CDK1 is a direct target gene of miR-1271-5p. With overexpression of miR-1271-5p in SMMC-7721 and HuH-7 cells, cell proliferation was decreased, radiosensitivity was enhanced, cell cycle distribution was altered and the growth of transplanted tumours in nude mice was significantly reduced. miR-1271-5p overexpression enhanced radiosensitivity, which could be reduced by CDK1 overexpression. Overall, our findings suggested that miR-1271-5p inhibits cell proliferation and enhances the radiosensitivity of HCC cell lines by targeting CDK1.


Subject(s)
CDC2 Protein Kinase/metabolism , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/radiotherapy , Liver Neoplasms/metabolism , Liver Neoplasms/radiotherapy , MicroRNAs/metabolism , Radiation Tolerance , Animals , CDC2 Protein Kinase/genetics , Carcinoma, Hepatocellular/pathology , Cell Proliferation/genetics , Computational Biology , Humans , Liver Neoplasms/pathology , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/pathology , Liver Neoplasms, Experimental/radiotherapy , Mice , Mice, Nude , MicroRNAs/genetics , Tumor Cells, Cultured
4.
Article in English | MEDLINE | ID: mdl-26342164

ABSTRACT

The chiral inversion has been a concerned issue during the research and development of a chiral drug. In this study, a sensitive chiral liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for determination of salbutamol enantiomers in human plasma and urine. The chiral inversion mechanism of R-salbutamol was fully investigated for the first time by studying the effects of physicochemical factors, including pH, temperature and time. A fitted model to predict the chiral inversion ratio of R-salbutamol was proposed using a Box-Behnken design. All the samples were separated on an Astec Chirobiotic T column and detected by a tandem mass spectrometer in multiple reaction monitoring mode. Lower limit of quantification of 0.100ng/mL was achieved under the optimized conditions. The method was fully validated and successfully applied to the clinical pharmacokinetic study of R-salbutamol in healthy volunteers. Chiral inversion of R-salbutamol to S-salbutamol has been detected in urine samples. The results indicated that pH and temperature were two dominant factors that caused the chiral inversion of R-salbutamol, which should be taken into consideration during the analysis of chiral drugs. The chiral inversion of R-salbutamol determined in this study was confirmed resulted from the gastric acid in stomach rather than caused by the analysis conditions. Moreover, the calculated results of the fitted model matched very well with the enantioselective pharmacokinetic study of R-salbutamol, and the individual difference of the chiral inversion ratio of R-salbutamol was related to the individual gastric environment. On the basis of the results, this study provides important and concrete information not only for the chiral analysis but also for the metabolism research of chiral drugs.


Subject(s)
Adrenergic beta-Agonists/blood , Adrenergic beta-Agonists/urine , Albuterol/blood , Albuterol/urine , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Humans , Limit of Detection , Stereoisomerism
5.
Article in English | MEDLINE | ID: mdl-26092775

ABSTRACT

A sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed for simultaneous chiral analysis of an antiasthma drug bambuterol, its key intermediate monocarbamate bambuterol and its active drug terbutaline in human plasma. All samples were extracted with ethyl acetate and separated on an Astec Chirobiotic T column under isocratic elution with a mobile phase consisting of methanol and water with the addition of 20mm ammonium acetate and 0.005% (v/v) formic acid at 0.6mL/min. The analytes were detected by a Xevo TQ-S tandem mass spectrometer with positive electrospray ionization in multiple reaction monitoring mode. The established method has high sensitivity with the lower limit of quantifications of 25.00pg/mL for bambuterol enantiomers, and 50.00pg/mL for monocarbamate bambuterol and terbutaline enantiomers, respectively. The calibration curves for bambuterol enantiomers were linear in the range of 25.00-2500pg/mL, and for monocarbamate bambuterol and terbutaline enantiomers were linear in the range of 50.00-5000pg/mL. The intra- and inter-day precisions were <12.4%. All the analytes were separated in 18.0min. For the first time, the validated method was successfully applied to an enantioselective pharmacokinetic study of rac-bambuterol in 8 healthy volunteers. According to the results, this chiral LC-MS/MS assay provides a suitable and robust method for the enantioselectivity and interaction study of the prodrug bambuterol, the key intermediate monocarbamate bambuterol and its active drug terbutaline in human.


Subject(s)
Terbutaline/analogs & derivatives , Chromatography, Liquid/methods , Humans , Limit of Detection , Linear Models , Reproducibility of Results , Stereoisomerism , Tandem Mass Spectrometry/methods , Terbutaline/blood , Terbutaline/chemistry , Terbutaline/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...