Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 137(5): 113, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38678511

ABSTRACT

KEY MESSAGE: The rust resistance genes Lr53 and Yr35 were introgressed into bread wheat from Aegilops longissima or Aegilops sharonensis or their S-genome containing species and mapped to the telomeric region of chromosome arm 6BS. Wheat leaf and stripe rusts are damaging fungal diseases of wheat worldwide. Breeding for resistance is a sustainable approach to control these two foliar diseases. In this study, we used SNP analysis, sequence comparisons, and cytogenetic assays to determine that the chromosomal segment carrying Lr53 and Yr35 was originated from Ae.longissima or Ae. sharonensis or their derived species. In seedling tests, Lr53 conferred strong resistance against all five Chinese Pt races tested, and Yr35 showed effectiveness against Pst race CYR34 but susceptibility to race CYR32. Using a large population (3892 recombinant gametes) derived from plants homozygous for the ph1b mutation obtained from the cross 98M71 × CSph1b, both Lr53 and Yr35 were successfully mapped to a 6.03-Mb telomeric region of chromosome arm 6BS in the Chinese Spring reference genome v1.1. Co-segregation between Lr53 and Yr35 was observed within this large mapping population. Within the candidate region, several nucleotide-binding leucine-rich repeat genes and protein kinases were identified as candidate genes. Marker pku6B3127 was completely linked to both genes and accurately predicted the absence or presence of alien segment harboring Lr53 and Yr35 in 87 tetraploid and 149 hexaploid wheat genotypes tested. We developed a line with a smaller alien segment (< 6.03 Mb) to reduce any potential linkage drag and demonstrated that it conferred resistance levels similar to those of the original donor parent 98M71. The newly developed introgression line and closely linked PCR markers will accelerate the deployment of Lr53 and Yr35 in wheat breeding programs.


Subject(s)
Aegilops , Chromosome Mapping , Disease Resistance , Genes, Plant , Puccinia , Aegilops/genetics , Aegilops/microbiology , Chromosomes, Plant/genetics , Disease Resistance/genetics , Genetic Introgression , Genetic Linkage , Genetic Markers , Plant Breeding , Plant Diseases/genetics , Plant Diseases/microbiology , Polymorphism, Single Nucleotide , Puccinia/physiology , Triticum/genetics , Triticum/microbiology
2.
Theor Appl Genet ; 136(5): 120, 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37103626

ABSTRACT

KEY MESSAGE: The diploid wheat recessive stem rust resistance gene SrTm4 was fine-mapped to a 754-kb region on chromosome arm 2AmL and potential candidate genes were identified. Race Ug99 of Puccinia graminis f. sp. tritici (Pgt), the causal agent of wheat stem (or black) rust is one of the most serious threats to global wheat production. The identification, mapping, and deployment of effective stem rust resistance (Sr) genes are critical to reduce this threat. In this study, we generated SrTm4 monogenic lines and found that this gene confers resistance to North American and Chinese Pgt races. Using a large mapping population (9522 gametes), we mapped SrTm4 within a 0.06 cM interval flanked by marker loci CS4211 and 130K1519, which corresponds to a 1.0-Mb region in the Chinese Spring reference genome v2.1. A physical map of the SrTm4 region was constructed with 11 overlapping BACs from the resistant Triticum monococcum PI 306540. Comparison of the 754-kb physical map with the genomic sequence of Chinese Spring and a discontinuous BAC sequence of DV92 revealed a 593-kb chromosomal inversion in PI 306540. Within the candidate region, we identified an L-type lectin-domain containing receptor kinase (LLK1), which was disrupted by the proximal inversion breakpoint, as a potential candidate gene. Two diagnostic dominant markers were developed to detect the inversion breakpoints. In a survey of T. monococcum accessions, we identified 10 domesticated T. monococcum subsp. monococcum genotypes, mainly from the Balkans, carrying the inversion and showing similar mesothetic resistant infection types against Pgt races. The high-density map and tightly linked molecular markers developed in this study are useful tools to accelerate the deployment of SrTm4-mediated resistance in wheat breeding programs.


Subject(s)
Basidiomycota , Plant Breeding , Triticum/genetics , Chromosome Mapping , Genotype , Genes, Plant , Plant Diseases/genetics , Disease Resistance/genetics
4.
Development ; 146(20)2019 10 21.
Article in English | MEDLINE | ID: mdl-31533924

ABSTRACT

WDR62 is the second most common genetic alteration associated with microcephaly. It has been shown that Wdr62 is required for germ cell meiosis initiation in mice, and the majority of male germ cells are lost in the meiotic defect of first wave spermatogenesis in Wdr62 mutants. Strikingly, in this study, we found that the initiation of meiosis following spermatogenesis was not affected and the germ cells were gradually repopulated at later developmental stages. However, most germ cells were arrested at metaphase of meiosis I and no mature sperm were detected in epididymides. Further, this study demonstrated that metaphase I arrest of Wdr62-deficient spermatocytes was caused by asymmetric distribution of the centrosome and aberrant spindle assembly. Also, mechanistic studies demonstrated that WDR62 interacts with centrosome-associated protein CEP170, and deletion of Wdr62 causes downregulation of the CEP170 protein, which in turn leads to the aberrant spindle assembly. In summary, this study indicates that the meiosis of first wave spermatogenesis and the following spermatogenesis started from spermatogonium is probably regulated by different mechanisms. We also demonstrated a new function of WDR62 in germ cell meiosis, through its interaction with CEP170.


Subject(s)
Cell Cycle Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Nerve Tissue Proteins/metabolism , Spindle Apparatus/metabolism , Animals , Cell Cycle Proteins/genetics , Centrosome/metabolism , Male , Meiosis/genetics , Meiosis/physiology , Metaphase/genetics , Metaphase/physiology , Mice , Mice, Knockout , Microtubule-Associated Proteins/genetics , Nerve Tissue Proteins/genetics , Protein Binding , Spermatocytes/cytology , Spermatocytes/metabolism , Spermatogenesis/genetics , Spermatogenesis/physiology
5.
PLoS Genet ; 14(8): e1007463, 2018 08.
Article in English | MEDLINE | ID: mdl-30102701

ABSTRACT

Meiosis is a germ cell-specific division that is indispensable for the generation of haploid gametes. However, the regulatory mechanisms of meiotic initiation remain elusive. Here, we report that the Wdr62 (WD40-repeat protein 62) is involved in meiotic initiation as a permissive factor rather than an instructive factor. Knock-out of this gene in a mouse model resulted in female meiotic initiation defects. Further studies demonstrated that Wdr62 is required for RA-induced Stra8 expression via the activation of JNK signaling, and the defects in meiotic initiation from Wdr62-deficient female mice could be partially rescued by JNK1 overexpression in germ cells. More importantly, two novel mutations of the WDR62 gene were detected in patients with premature ovarian insufficiency (POI), and these mutations played dominant-negative roles in regulating Stra8 expression. Hence, this study revealed that Wdr62 is involved in female meiotic initiation via activating JNK signaling, which displays a novel mechanism for regulating meiotic initiation, and mutation of WDR62 is one of the potential etiologies of POI in humans.


Subject(s)
Cell Cycle Proteins/genetics , MAP Kinase Signaling System/genetics , Microtubule-Associated Proteins/genetics , Nerve Tissue Proteins/genetics , Primary Ovarian Insufficiency/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Asian People/genetics , Cell Cycle Proteins/deficiency , Cell Cycle Proteins/metabolism , Disease Models, Animal , Female , Gene Deletion , Gene Expression Regulation , Germ Cells , Haploidy , Humans , Male , Meiosis , Mice , Mice, Knockout , Microtubule-Associated Proteins/deficiency , Microtubule-Associated Proteins/metabolism , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/metabolism , Primary Ovarian Insufficiency/diagnosis , Sequence Analysis, DNA , Exome Sequencing
6.
Biol Reprod ; 90(4): 71, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24571983

ABSTRACT

Wilms tumor gene, Wt1, is abundantly expressed in testis Sertoli cells. Our recent study demonstrated that Wt1 is involved in spermatogenesis by regulating Sertoli cell polarity. In the present study, we found that Wt1 is also required for steroidogenesis in Leydig cells and that deletion of the Wt1 gene resulted in defects in testosterone biosynthesis and downregulation of steroidogenic gene expression, including cytochrome P450 side-chain cleavage (P450scc), steroidogenic acute regulatory protein (StAR), 3beta-hydroxysteroid dehydrogenase I (3beta-HSD), and cytochrome P450 17A1 (Cyp17a1). The expression of LHR was significantly decreased in Wt1(-/flox); Cre-ER(TM) testes after tamoxifen induction, whereas the luteinizing hormone level in serum was unchanged. Further studies revealed that desert hedgehog (Dhh) expression was regulated by Wt1 in Sertoli cells and that its expression was significantly reduced in Wt1-deficient testes. In vitro study demonstrated that the defect in testosterone production and decreased expression of several steroidogenic genes in Wt1-deficient testis explants was partially rescued by smoothened agonist (SAG), a hedgehog pathway agonist. These results indicate that Wt1 is most likely involved in Leydig cell steroidogenesis by regulating the expression of paracrine factors in seminiferous tubules. Dhh probably had important roles in this process, but we could not exclude the possibility that other factors were also required for Leydig cell steroidogenesis. Loss of Wt1 leads to downregulation of paracrine factors, which in turn causes a decrease in steroidogenic enzyme expression and reduces testosterone production in Leydig cells. The results of this study further confirm that the cross talk between Sertoli cells and Leydig cells has important roles in Leydig cell steroidogenesis.


Subject(s)
Leydig Cells/metabolism , Paracrine Communication/physiology , Spermatogenesis/physiology , Steroids/biosynthesis , WT1 Proteins/metabolism , Animals , Cells, Cultured , Female , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Leydig Cells/cytology , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Organ Culture Techniques , Receptors, LH/genetics , Receptors, LH/metabolism , Seminiferous Tubules/metabolism , Sertoli Cells/cytology , Sertoli Cells/metabolism , Testis/cytology , Testis/metabolism , Testosterone/biosynthesis , WT1 Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...