Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(15): 17458-17466, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38645310

ABSTRACT

The flow field design of the proton exchange membrane fuel cell (PEMFC) had a great impact on the performance and lifespan of the cell. To improve the uniformity of the substance component inside the PEMFC, referring to the serpentine flow field, a kind of compensating flow field is designed and investigated. Under the same conditions, the homogeneity of the two flow field structures is compared, and the influence of the homogeneity of two flow field distributions on the performance of the PEMFC is further analyzed. The polarization curve, maximum pressure difference at the inlet and outlet of the flow channel, and thermal stress generated by temperature gradients are used as performance indicators for evaluating the performance of the cell. The results show that after compensation, the distribution uniformity of each component in the flow field is improved, and the power density, water management, and thermal management capabilities are better than those in the traditional flow field design. Furthermore, the thermal performance of the single-layer cell and five-layer stack was compared. The results show that the more fuel cell layers, the greater the temperature difference within the cell, which will result in greater thermal stress. In the compensation flow field, the thermal stress of a single-layer unit is 14% lower than that of a serpentine flow field, and the thermal stress of a five-layer stack is 20% lower.

2.
Photodiagnosis Photodyn Ther ; 45: 103954, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38145772

ABSTRACT

Dermatophytosis is the most common fungal infectious disease in the world, which is commonly caused by Trichophyton rubrum in China. The traditional therapies for treating dermatophytosis include topical and oral antifungal agents like terbinafine, griseofulvin, and azole antifungal drugs. However, 5-aminolevulinic acid-based photodynamic therapy (ALA-PDT) as a new alternative therapy avoids the side effects and drug resistance of traditional antifungal agents. We report two cases diagnosed as kerion and tinea faciei secondary to ulcers with CARD 9 deficiency, both of whom were infected by T.rubrum. They were both successfully treated by ALA-PDT combined with antifungal drugs, providing a feasible strategy for therapeutic choice for adult kerion and ulcer treatment.


Subject(s)
Arthrodermataceae , Photochemotherapy , Tinea Capitis , Adult , Humans , Antifungal Agents/therapeutic use , Aminolevulinic Acid/therapeutic use , Ulcer , Photochemotherapy/methods , Photosensitizing Agents/therapeutic use
3.
Poult Sci ; 102(12): 103130, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37926011

ABSTRACT

Early embryonic exogenous feeding of bioactive substances is a topic of interest in poultry production, potentially improving gastrointestinal tract (GIT) development, stimulating immunization, and maximizing the protection capability of newly hatched chicks. However, the biophysiological actions and effects of in ovo administered bioactive substances are inconsistent or not fully understood. Thus, this paper summarizes the functional effects of bioactive substances and their interaction merits to augment GIT development, the immune system, and microbial homeostasis in newly hatched chicks. Prebiotics, probiotics, and synbiotics are potential bioactive substances that have been administered in embryonic eggs. Their biological effects are enhanced by a variety of mechanisms, including the production of antimicrobial peptides and antibiotic responses, regulation of T lymphocyte numbers and immune-related genes in either up- or downregulation fashion, and enhancement of macrophage phagocytic capacity. These actions occur directly through the interaction with immune cell receptors, stimulation of endocytosis, and phagocytosis. The underlying mechanisms of bioactive substance activity are multifaceted, enhancing GIT development, and improving both the innate and adaptive immune systems. Thus summarizing these modes of action of prebiotics, probiotics and synbiotics can result in more informed decisions and also provides baseline for further research.


Subject(s)
Microbiota , Probiotics , Synbiotics , Animals , Chickens/physiology , Immunity, Mucosal , Ovum , Prebiotics , Probiotics/pharmacology , Gastrointestinal Tract
4.
J Sci Food Agric ; 103(14): 6966-6974, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37312006

ABSTRACT

BACKGROUND: N-acetylglutamate (NAG) is the initial and essectial substrate in the process of de novo arginine synthesis, plays an important role in intestinal development. The aim of this study was to determine the effects of in ovo feeding of NAG, 1.5 mg/egg at 17.5 days of incubation (DOI) via amnion, on hatching performance, early intestinal histomorphometry, jejunal barrier, digestive function, and growth performance of broiler chickens between 1 and 14 days of age. RESULTS: Amniotic injection of NAG had no significant effect on hatching characteristics compared with the non-injected control group (NC group). Birds in the NAG solution-injected group (NAG group) exhibited lower average daily feed intake and better feed efficiency during a period of 1-14 days. In comparison with the NC group, the NAG group had decreased crypt depth (CD) in the ileum and increased villus height (VH) / CD in the jejunum at 7 days, and decreased CD in duodenum and significantly increased VH in the jejunum at 14 days. However, the effects of in ovo supplementation with NAG on the density of goblet cells, and gene expression of mucin 2 and alkaline phosphatase were not significant. Chicks in the NAG group had a significantly higher mRNA expression level of trypsin and maltase in jejunum at 7 days than the NC group but not at 14 days. CONCLUSION: Amniotic injections of NAG (1.5 mg/egg) at 17.5 DOI could improve early growth performance of broilers during 1-14 days after hatching by accelerating the development of the intestine and enhancing jejunal digestive function. © 2023 Society of Chemical Industry.


Subject(s)
Amnion , Chickens , Animals , Chickens/metabolism , Intestines , Glutamates/metabolism , Animal Feed/analysis , Diet/veterinary , Dietary Supplements
5.
Anim Biosci ; 35(2): 332-346, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34991217

ABSTRACT

Shortage of protein feed resources is the major challenge to the world farm animal industry. Insects are known as an alternative protein source for poultry. A wide range of insects are available for use in poultry diets. Insect larvae thrive in manure, and organic waste, and produce antimicrobial peptides to protect themselves from microbial infections, and additionally these peptides might also be functional in poultry feed. The feed containing antimicrobial peptides can improve the growth performance, nutrient digestibility, intestinal health, and immune function in poultry. Insect meal contains a higher amount of essential amino acids compared to conventional feedstuffs. Black soldier fly, mealworm, housefly, cricket/Grasshopper/Locust (Orthoptera), silkworm, and earthworm are the commonly used insect meals in broiler and laying hen diets. This paper summarizes the nutrient profiles of the insect meals and reviews their efficacy when included in poultry diets. Due to the differences in insect meal products, and breeds of poultry, inconsistent results were noticed among studies. The main challenge for proper utilization, and the promising prospect of insect meal in poultry diet are also addressed in the paper. To fully exploit insect meal as an alternative protein resource, and exert their functional effects, modes of action need to be understood. With the emergence of more accurate and reliable studies, insect meals will undoubtedly play more important role in poultry feed industry.

6.
Front Plant Sci ; 11: 536, 2020.
Article in English | MEDLINE | ID: mdl-32435256

ABSTRACT

Climatic factors are considered the major driving forces for variation of flowering phenology among species. Yet, whether flowering phenology of woody species varies with functional traits, growth form, and phylogeny in arid regions is unknown. In the present study, we evaluated the relationships of three characteristics of flowering phenology (i.e., first flowering date, end of flowering date, and flowering duration) against functional traits, growth form, and phylogeny across 59 woody plant species across 3 years in Ürümqi city of the Xinjiang Autonomous Region, in Northwest China. The results showed that, plant functional traits and growth form had significant influences on the variability of flowering phenology among species. The contributions of fruit type (34.7-43.5%) and flower color (30.1-30.7%) to the variability of flowering phenology were larger than those of pollination mode (4.6-14.4%), life form (8.4-14%) and maximum plant height (9.7-13.1%). Trees had the significant correlations in terms of flowering duration against first flowering date and end of flowering date, while shrubs showed the opposite pattern. The values of phylogenetic signal (Blomberg's K) of the three characteristics of flowering phenology ranged from 0.36 to 0.43, which were significantly lower than the expectation of the Brownian motion model. Our results suggested that functional traits, growth form and phylogeny all affected variability of flowering phenology among species. Our results provide a new perspective for correctly evaluating the relationship between global climate change and plant reproduction.

7.
Ann Hematol ; 97(10): 1941-1950, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29947972

ABSTRACT

A meta-analysis of randomized controlled trials (RCTs) was conducted to evaluate the efficacy and safety of mesenchymal stromal cells (MSCs) for the prophylaxis of chronic graft-versus-host disease (cGVHD) in patients with hematological malignancies undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT). Six studies involving 365 patients were included. The pooled results showed that MSCs significantly reduced the incidence of cGVHD (risk ratio [RR] 0.63, 95% confidence interval [CI] 0.46 to 0.86, P = 0.004). Favorable prophylactic effects of MSCs on cGVHD were observed with umbilical cord-derived, high-dose, and late-infusion MSCs, while bone marrow-derived, low-dose, and coinfused MSCs did not confer beneficial prophylactic effects. In addition, MSC infusion did not increase the risk of primary disease relapse and infection (RR 1.02, 95% CI 0.70 to 1.50, P = 0.913; RR 0.89, 95% CI 0.44 to 1.81, P = 0.752; respectively). Moreover, there was an apparent trend toward increased overall survival (OS) in the MSC group compared with that in the control group (RR 1.13, 95% CI 0.98 to 1.29, P = 0.084). In conclusion, this meta-analysis demonstrated that MSC infusion is an effective and safe prophylactic strategy for cGVHD in patients with hematological malignancies undergoing allo-HSCT.


Subject(s)
Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/immunology , Randomized Controlled Trials as Topic , Allografts , Bone Marrow Cells , Fetal Blood/cytology , Graft vs Host Disease/epidemiology , Humans , Incidence , Infections/epidemiology , Mesenchymal Stem Cell Transplantation/adverse effects , Mesenchymal Stem Cell Transplantation/methods , Organ Specificity , Recurrence , Treatment Outcome
8.
Environ Sci Pollut Res Int ; 23(17): 17404-12, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27230143

ABSTRACT

Knowledge of the water sources used by desert trees and shrubs is critical for understanding how they function and respond to groundwater decline and predicting the influence of water table changes on riparian plants. In this paper, we test whether increased depth to groundwater changed the water uptake pattern of desert riparian species and whether competition for water resources between trees and shrubs became more intense with a groundwater depth gradient. The water sources used by plants were calculated using the IsoSource model, and the results suggested differences in water uptake patterns with varying groundwater depths. At the river bank (groundwater depth = 1.8 m), Populus euphratica and Tamarix ramosissima both used a mixture of river water, groundwater, and deeper soil water (>75 cm). When groundwater depth was 3.8 m, trees and shrubs both depended predominantly on soil water stored at 150-375 cm depth. When the groundwater depth was 7.2 m, plant species switched to predominantly use both groundwater and deeper soil water (>375 cm). However, differences in water acquisition patterns between species were not found. The proportional similarity index (PSI) of proportional contribution to water uptake of different water resources between P. euphratica and T. ramosissima was calculated, and results showed that there was intense water resource competition between P. euphratica and T. ramosissima when grown at shallow groundwater depth (not more than 3.8 m), and the competition weakened when the groundwater depth increased to 7.2 m.


Subject(s)
Groundwater , Populus/physiology , Tamaricaceae/physiology , China , Trees , Water Resources
9.
Environ Manage ; 51(4): 926-38, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23377191

ABSTRACT

Based on hydrological and climatic data and land use/cover change data covering the period from 1957 to 2009, this paper investigates the hydrological responses to climate change and to human activities in the arid Tarim River basin (TRB). The results show that the surface runoff of three headstreams (Aksu River, Yarkant River and Hotan River) of the Tarim River exhibited a significant increasing trend since 1960s and entered an even higher-runoff stage in 1994. In the contrary, the surface runoff of Tarim mainstream displayed a persistent decreasing trend since 1960s. The increasing trend of surface runoff in the headstreams can be attributed to the combined effects of both temperature and precipitation changes during the past five decades. But, the decreasing trend of surface runoff in the mainstream and the observed alterations of the temporal and spatial distribution patterns were mainly due to the adverse impacts of human activities. Specifically, increasingly intensified water consumption for irrigation and the associated massive constructions of water conservancy projects were responsible for the decreasing trend of runoff in the mainstream. And, the decreasing trend has been severely jeopardizing the ecological security in the lower reaches. It is now unequivocally clear that water-use conflicts among different sectors and water-use competitions between upper and lower reaches are approaching to dangerous levels in TRB that is thus crying for implementing an integrated river basin management scheme.


Subject(s)
Rivers , Asia, Central , China , Climate Change , Environmental Monitoring , Humans
10.
Environ Manage ; 51(1): 138-53, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22392285

ABSTRACT

Eco-hydrological research in arid inland river basins has been a focus of geologists and ecologists as it is crucial for maintaining the sustainable development of socio-economy, particularly in ecologically vulnerable areas. Based on the research work carried out in the Tarim River basin of Xinjiang, northwestern China, this paper summarizes synthetically the climate change and associated responses of water resources in the mountainous area, land use and land cover in the oasis, and plants responding to environmental stresses in the desert area of the river basin. Research gaps, challenges, and future perspectives in the eco-hydrological studies of the Tarim River basin are also discussed.


Subject(s)
Ecosystem , China , Hydrology
11.
J Environ Sci (China) ; 19(4): 488-93, 2007.
Article in English | MEDLINE | ID: mdl-17915714

ABSTRACT

Based on hydrology, temperature, and precipitation data from the past 50 years, the effects of climate change on water resources in Tarim River Basin in Northwest China were investigated. The long-term trends of the hydrological time series were detected using both parametric and nonparametric techniques. The results showed that the increasing tendency of the temperature has a 5% level of significance, and the temperature increased by nearly 1 degree C over the past 50 years. The precipitation showed a significant increase in the 1980s and 1990s, and the average annual precipitation exhibited an increasing trend with a magnitude of 6.8 mm per decade. A step change occurred in both the temperature and precipitation time series around 1986. The streamflow from the headwater of the Tarim River exhibited a significant increase during the last 20 years. The increase in temperature, precipitation, and streamflow may be attributed to global climate change.


Subject(s)
Climate , Rivers , China , Rain , Temperature , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...