Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Biochem ; 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37436654

ABSTRACT

Herein, we investigated the role of the m6A methylation enzyme METTL14 in regulating myocardial ischemia/reperfusion injury (IR/I) through the Akt/mTOR signaling pathway and related biological mechanisms. Enzyme-linked immunosorbent assay (ELISA) and fluorescence quantitative polymerase chain reaction (qPCR) were performed to detect the m6A mRNA and METTL3, METTL14, WTAP, and KIAA1429 levels in a mouse myocardial IR/I model. An oxygen-glucose deprivation/reperfusion (OGD/R) model was constructed by transfecting neonatal rat cardiomyocytes (NRCM) with METTL14-knockdown lentivirus. METTL14, Bax, and cleaved-caspase3 mRNA expression levels were detected using fluorescence qPCR. Apoptosis was detected using TUNEL staining. After the IR/I surgery following the adeno-associated virus injection, the METTL14 mRNA and apoptosis-related BAX/BCL2 protein expression was detected using fluorescence qPCR and western blotting, respectively. Degree of cell necrosis was detected using an LDH assay. The oxidative stress response of the myocardial tissue was detected, and IL-6 and IL-1ß serum levels were detected using ELISAs. The mice injected with METTL14-knockdown AAV9 adeno-associated virus underwent IR/I surgery after the injection of an Akt/mTOR pathway inhibitor (MK2206) into the myocardial layer. Elevated mRNA m6A modification and m6A methyltransferase METTL14 levels were observed in the IR/I-injured mouse heart tissues. METTL14 knockdown significantly inhibited the OGD/R- and IR/I-induced apoptosis and necrosis in cardiac myocytes, inhibited IR/I-induced oxidative stress and inflammatory factor secretion, and activated the Akt/ mTOR pathway in vitro and in vivo. Akt/mTOR pathway inhibition significantly attenuated the alleviating effect of METTL14 knockdown on myocardial IR/I injury-induced apoptosis. Knocking down m6A methylase METTL14 inhibits IR/I-induced myocardial apoptosis and necrosis, inhibits myocardial oxidative stress and secretion of inflammatory cytokines, and activates the Akt/mTOR signaling pathway. Hence, METTL14 regulated myocardial apoptosis and necrosis in mice with IR/I through the Akt/mTOR signaling pathway.

2.
Clin Cardiol ; 45(8): 821-830, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35758277

ABSTRACT

BACKGROUND AND HYPOTHESIS: The rehabilitation effect of circuit resistance training in coronary heart disease (CHD) patients remains unclear. We perform this review to examine the rehabilitation effect of circuit resistance training in CHD patients and to provide a basis for the formulation of reasonable individual exercise prescriptions for CHD patients. METHODS: Randomized controlled trials (RCTs) were searched on PubMed, Web of Science, The Cochrane Library, Embase, Clinical Trials, and CNKI. About 1232 studies were identified. Nine RCTs were finally used for the present meta-analysis to determine the rehabilitation effect of circuit resistance training in CHD patients, compared to aerobic training. Individuals enrolled for the studies were at a mean age of 60.5 years old and were all CHD patients. Following the PRISMA guidelines, we extracted basic information about the study and patient characteristics, as well as measurements (e.g., the peak oxygen uptake, the body mass index [BMI], the body fat percentage, the systolic blood pressure, the total cholesterol, and triglycerides). Subsequently, this meta-analysis determined the overall effect by using standardized mean difference (SMD) and 95% confidence interval (CI). RESULTS: Compared with aerobic training, circuit resistance training significantly decrease the BMI and the body fat percentage. CONCLUSIONS: As suggested from the present meta-analysis of RCTs, circuit resistance training is effective in improving the BMI and the body fat percentage in CHD patients and may help delay the progression of CHD. CRT has the advantage of lower load in most cases with a similar effect.


Subject(s)
Circuit-Based Exercise , Coronary Disease , Resistance Training , Coronary Disease/rehabilitation , Exercise Therapy , Humans , Middle Aged , Quality of Life
3.
Perfusion ; 37(1): 86-94, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33300444

ABSTRACT

The role of Hsa_circ_0001445 in oxidation Low Lipoprotein (ox-LDL) induced HUVEC inflammatory damage remains poorly characterized. The present study investigated the performance of the circRNA Hsa_circ_0001445 on ox-LDL-induced HUVEC inflammatory damage. ox-LDL was employed to treat HUVECs and the expression of Hsa_circ_0001445 in cells were detected by qRT-PCR. Then, the overexpression plasmid of circ_0001445 was transfected into HUVECs. The Cell Counting Kit-8 assay was performed to detect cell viability, and the expression of tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß and IL-6 in treatment cells were measured using ELISAs. Furthermore, the oxidative stress kit was used to detect the levels of malondialdehyde, superoxide dismutase and glutathione peroxidase in treatment cells. Flow cytometry assay was applied to measure cell apoptosis, and the expressions of apoptosis-related protein were measured by western blot. The luciferase reporter assay was applied to confirm the target binding between Hsa_circ_0001445 and micro-RNA-640 (miRNA-640). Next, miRNA-640 mimic was transfected into ox-LDL-induced HUVECs, and then cell proliferation, expression level of inflammatory factors, oxidative stress and apoptosis level in treatment cells were assessed, with the expression of related proteins measured. The results revealed that the expression of Hsa_circ_0001445 was obviously downregulated in ox-LDL-induced HUVECs. Overexpression of Hsa_circ_0001445 promoted cell proliferation, inhibited ox-LDL-induced HUVEC inflammatory response, downregulate the expression of TNF-α, IL-1ß and IL-16, overexpression of Hsa_circ_0001445 inhibited cell apoptosis. miRNA-640 was confirmed as a direct target of Hsa_circ_0001445, and miRNA-640 mimic reversed the effects of Hsa_circ_0001445 overexpression on ox-LDL-induced HUVECs. Our findings concluded that Hsa_circ_0001445 inhibits ox-LDL-induced HUVEC inflammation, oxidative stress and apoptosis by regulating miRNA-640.


Subject(s)
Atherosclerosis , MicroRNAs , RNA, Circular/genetics , Apoptosis , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Humans , Inflammation/metabolism , Lipoproteins, LDL , MicroRNAs/genetics , MicroRNAs/metabolism , Oxidative Stress
4.
Bioengineered ; 12(1): 8089-8099, 2021 12.
Article in English | MEDLINE | ID: mdl-34662522

ABSTRACT

Endothelial cell damage induced by oxidized low-density lipoprotein (ox-LDL) plays an important role in the pathogenesis of atherosclerosis (AS). We aimed to explore the effects of lysophosphatidic acid receptor 5 (LPAR5) on ox-LDL-induced damage of human umbilical vein endothelial cells (HUVECs). After HUVECs exposed to ox-LDL, LPAR5 expression was detected by RT-qPCR and western blotting. Then, LPAR5 was silenced and cell viability was determined with a CCK-8 assay. ELISA was employed to analyze the contents of inflammatory factors. The levels of oxidative stress markers were examined by kits. The expression of proteins related to endothelium function, including CD31, α-SMA, iNOS and eNOS, was evaluated with RT-qPCR and western blotting. Additionally, the effects of LPAR5 deletion on the NLRP3 inflammasome signaling in HUVECs under ox-LDL condition were assessed by determining NLRP3, caspase-1 and ASC expression. Afterward, NLRP3 agonist MSU was adopted for exploring the regulation of LPAR5 on NLRP3 inflammasome signaling in ox-LDL HUVECs injury. Results revealed that ox-LDL led to a significant upregulation in LPAR5 expression. NLRP3 knockdown enhanced cell viability, inhibited inflammation and oxidative stress in HUVECs after ox-LDL exposure. Besides, the expression of CD31 and eNOS was increased while that of α-SMA and iNOS was decreased after LPAR5 silencing. Moreover, interference with LPAR5 remarkably downregulated NLRP3, caspase-1 and ASC expression. Furthermore, MSU addition partially abrogated the inhibitory effects of LPAR5 deletion on the inflammation, oxidative stress and endothelium dysfunction of HUVECs. To conclude, we demonstrated that LPAR5 silencing alleviates ox-LDL-induced HUVECs injury by inhibiting NLRP3 inflammasome signaling.


Subject(s)
Atherosclerosis/metabolism , Lipoproteins, LDL/adverse effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Receptors, Lysophosphatidic Acid/genetics , Receptors, Lysophosphatidic Acid/metabolism , Atherosclerosis/chemically induced , Atherosclerosis/genetics , CARD Signaling Adaptor Proteins/metabolism , Cell Proliferation , Cell Survival , Gene Silencing , Human Umbilical Vein Endothelial Cells , Humans , Models, Biological , Nitric Oxide Synthase Type III/metabolism , Oxidative Stress , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Signal Transduction
6.
Med Sci Monit ; 26: e924564, 2020 Jun 28.
Article in English | MEDLINE | ID: mdl-32594095

ABSTRACT

BACKGROUND Myocardial ischemia mediates the progression of multiple cardiovascular diseases and leads to serious damage to the morphology, function, and metabolism of cardiomyocytes. The serum level of the hormone Meteorin-like (METRNL) was lower in patients with coronary artery disease and was negatively correlated with inflammatory cytokines. The aim of the present study was to determine the relationship between METRNL and myocardial ischemia/reperfusion (MI/R) injury, and investigate the molecular mechanisms implicated the pathogenesis of myocardial ischemia. MATERIAL AND METHODS In the present study, H9C2 cells underwent oxygen-glucose deprivation and reperfusion (OGD/R) treatment to establish a MI/R cell model. Quantitative real-time polymerase chain reaction was performed to analyze the expression of target gene. Western blot was used to evaluate the protein expression. Cell Counting Kit-8 assay was employed to detect the cell viability. Enzyme-linked immunosorbent assay was carried out to determine the levels of inflammatory cytokines. Finally, flow cytometry and TUNEL staining were used to detect the apoptotic levels of cardiomyocytes. RESULTS The results showed that the expression of METRNL was downregulated in H9C2 cells during OGD/R. Interestingly, METRNL overexpression inhibited the inflammation, apoptosis and endoplasmic reticulum stress in H9C2 cells during OGD/R, which were totally reversed by PAK2 silencing. In addition, METRNL overexpression induced activation of AMPK-PAK2 signaling cascade. CONCLUSIONS METRNL attenuates MI/R injury-induced cardiomyocytes apoptosis by alleviating endoplasmic reticulum stress via activation of AMPK-PAK2 signaling in H9C2 cells. Our findings support that METRNL might be a promising target for treatment of myocardial ischemia in the future.


Subject(s)
Adenylate Kinase/genetics , Adipokines/genetics , Apoptosis/genetics , Endoplasmic Reticulum Stress/genetics , Myocardial Reperfusion Injury/genetics , Myocytes, Cardiac/metabolism , p21-Activated Kinases/genetics , Adenylate Kinase/metabolism , Animals , Blotting, Western , Cell Line , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Rats , Real-Time Polymerase Chain Reaction , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , p21-Activated Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...