Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.258
Filter
2.
Plant Physiol Biochem ; 212: 108783, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38824694

ABSTRACT

Cimicifuga dahurica (C. dahurica) is an important medicinal plant in the northern region of China. The best supplemental light environment helps plant growth, development, and metabolism. In this study, we used two-year-old seedlings as experimental materials. The white light as the control (CK). The different ratios of red (R) and blue (B) combined light were supplemented (T1, 2R: 1B, 255.37 µmol m-2·s-1; T2, 3R: 1B, 279.69 µmol m-2·s-1; T3, 7R: 1B, 211.16 µmol m-2·s-1). The growth characteristics, photosynthetic pigment content, photosynthesis and chlorophyll fluorescence parameters, and primary metabolite content were studied in seedlings. The results showed that: 1) The fresh weight from shoot, root, and total fresh weight were significantly (P < 0.05) increased under T2 and T3 treatment. 2) The contents of chlorophyll a (Chl a), chlorophyll b (Chl b), and total chlorophyll (Chl) were significantly (P < 0.05) increased under T2 treatment, and carotenoid (car) content was reduced. 3) The photochemical quenching (qP), the actual photosynthetic efficiency of PSII (Y(II)), and the photosynthetic electron transfer rate (ETR) from leaves were significantly (P < 0.05) increased under T1 treatment. The Net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr) were significantly (P < 0.05) increased under T2 and T3 treatments. 4) A total of 52 primary metabolites were detected in C. dahurica leaves. Compared with CK, 14, 15, and 18 differential metabolites were screened under T1, T2, and T3 treatments. In addition, D-xylose, D-glucose, glycerol, glycolic acid, and succinic acid were significantly (P < 0.05) accumulated under the T2 treatment, which could regulate the TCA cycle metabolism pathway. The correlation analysis suggested that plant growth was promoted by regulating the change of D-mannose content in galactinol metabolism and amino sugar and nucleotide sugar metabolism. In summary, the growth of C. dahurica was improved under T2 treatment.

3.
Angew Chem Int Ed Engl ; : e202407261, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842470

ABSTRACT

The cycling performance of zinc-ion batteries is greatly affected by dendrite formation and side reactions on zinc anode, particularly in scenarios involving high depth of discharge (DOD) and low negative/positive capacity (N/P) ratios in full cells. Herein, drawing upon principles of host-guest interaction chemistry, we investigate the impact of molecular structure of electrolyte additives, specifically the -COOH and -OH groups, on the zinc negative electrode through molecular design. Our findings reveal that molecules containing these groups exhibit strong adsorption onto zinc anode surfaces and chelate with Zn2+, forming a H2O-poor inner Helmholtz plane. This effectively suppresses side reactions and promotes dendrite-free zinc deposition of exposed (002) facets, enhancing stability and reversibility of an average coulombic efficiency of 99.89% with the introduction of Lactobionic acid (LA) additive. Under harsh conditions of 92% DOD, Zn//Zn cells exhibit stable cycling at challenging current densities of 15 mA·cm-2. Even at a low N/P ratio of 1.3, Zn//NH4V4O10 full cells with LA electrolyte exhibit high-capacity retention of 73% after 300 cycles, significantly surpassing that of the blank electrolyte. Moreover, in a conversion type Zn//Br static battery with a high areal capacity (~ 5 mAh·cm-2), LA electrolyte sustains an improved cycling stability of 700 cycles.

4.
Heliyon ; 10(11): e31865, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38845899

ABSTRACT

As the malignant tumor with the highest incidence in male, prostate cancer poses a significant threat to the reproductive health of elderly men. Our previous studies have shown that promoting necroptosis of cancer cells can effectively inhibit cancer cell proliferation. This study includes lentivirus-mediated knockdown of ß2AR which resulted in stable transfectants that exhibited an increased ability to form clones compared to that of the negative control group. In the protein and mRNA levels, necroptosis associated RIP and mixed lineage kinase domain-like (MLKL) were significantly higher in the treatment group than they were in the control group. Furthermore, cells treated with propranolol exhibited necrotic morphology as observed by transmission electron microscopy. The combination of ß2AR suppression and necroptosis inhibitors resulted in a more potent suppression of cell proliferation compared to that observed in the control and negative control groups. Additionally, it elevated in the necrosis rate as determined by flow cytometry. Immunofluorescence staining revealed enhanced RIP and MLKL expression in the sh-ß2AR group compared to levels in the negative control group. Co-immunoprecipitation experiments detected an interaction between ß2AR and RIP. MLKL and RIPK3 levels were significantly higher in xenograft tumor sections from the sh-ß2AR group compared to levels in the sh-NC group. To conclude, our research indicates the proliferation of PC-3 and DU-145 cprostate cancer cells can be suppressed by inhibiting ß2AR, and this occurs through the RIP/MLKL-mediated pathway of necroptosis.

5.
Eur J Gastroenterol Hepatol ; 36(7): 815-830, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38829940

ABSTRACT

Currently, there are increasingly diverse treatment modalities for chronic functional constipation (CFC). This study aims to compare the relative efficacy and safety of chemical drugs, fecal microbiota transplantation (FMT), probiotics, dietary fiber, and acupuncture in the treatment of patients with CFC. We searched relevant randomized controlled trials (RCTs) published in five databases up to November 2023. Network meta-analysis (NMA) was carried out using R Studio 4.2.1. Cumulative ranking probability plots, assessed through the surface under the cumulative ranking (SUCRA), were employed to rank the included drugs for various outcome measures. We included a total of 45 RCT studies with 17 118 patients with CFC. From the SUCRA values and NMA results FMT showed the best utility in terms of clinical efficacy, Bristol stool form scale scores, patient assessment of constipation quality of life scores, and the treatment modality with the lowest ranked incidence of adverse effects was electroacupuncture. Subgroup analysis of the chemotherapy group showed that sodium A subgroup analysis of the chemical group showed that sodium picosulfate 10 mg had the highest clinical efficacy. FMT is more promising in the treatment of CFC and may be more effective in combination with the relatively safe treatment of acupuncture.


Subject(s)
Acupuncture Therapy , Constipation , Dietary Fiber , Fecal Microbiota Transplantation , Probiotics , Constipation/therapy , Constipation/microbiology , Humans , Fecal Microbiota Transplantation/adverse effects , Dietary Fiber/therapeutic use , Probiotics/therapeutic use , Probiotics/adverse effects , Chronic Disease , Acupuncture Therapy/methods , Treatment Outcome , Network Meta-Analysis , Randomized Controlled Trials as Topic , Quality of Life , Laxatives/therapeutic use
6.
Adv Sci (Weinh) ; : e2306730, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704687

ABSTRACT

Aberrant tumor mechanical microenvironment (TMME), featured with overactivated cancer-associated fibroblasts (CAFs) and excessive extracellular matrix (ECM), severely restricts penetration and accumulation of cancer nanomedicines, while mild-hyperthermia photothermal therapy (mild-PTT) has been developed to modulate TMME. However, photothermal agents also encounter the barriers established by TMME, manifesting in limited penetration and heterogeneous distribution across tumor tissues and ending with attenuated efficiency in TMME regulation. Herein, it is leveraged indocyanine green (ICG)-loaded soft nanogels with outstanding deformability, for efficient tumor penetration and uniform distribution, in combination with mild-PTT to achieve potent TMME regulation by inhibiting CAFs and degrading ECM. As a result, doxorubicin (DOX)-loaded stiff nanogels gain greater benefits in tumor penetration and antitumor efficacy than soft counterparts from softness-mediated mild-PTT. This study reveals the crucial role of nanomedicine mechanical properties in tumor distribution and provides a novel strategy for overcoming the barriers of solid tumors with soft deformable nanogels.

7.
Mil Med Res ; 11(1): 32, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38812059

ABSTRACT

Mitochondria, the most crucial energy-generating organelles in eukaryotic cells, play a pivotal role in regulating energy metabolism. However, their significance extends beyond this, as they are also indispensable in vital life processes such as cell proliferation, differentiation, immune responses, and redox balance. In response to various physiological signals or external stimuli, a sophisticated mitochondrial quality control (MQC) mechanism has evolved, encompassing key processes like mitochondrial biogenesis, mitochondrial dynamics, and mitophagy, which have garnered increasing attention from researchers to unveil their specific molecular mechanisms. In this review, we present a comprehensive summary of the primary mechanisms and functions of key regulators involved in major components of MQC. Furthermore, the critical physiological functions regulated by MQC and its diverse roles in the progression of various systemic diseases have been described in detail. We also discuss agonists or antagonists targeting MQC, aiming to explore potential therapeutic and research prospects by enhancing MQC to stabilize mitochondrial function.


Subject(s)
Mitochondria , Mitophagy , Humans , Mitochondria/metabolism , Mitochondria/physiology , Mitophagy/physiology , Mitophagy/drug effects , Mitochondrial Dynamics/physiology
8.
Clin Transl Oncol ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789889

ABSTRACT

INTRODUCTION: Prostate cancer is a common urology malignant in males, ranking second globally. The disease is especially severe when diagnosed alongside hypertension. MKI67 is an established marker of neoplastic cell proliferation in humans, but the significance of its prognostic value in patients with prostate cancer and hypertension requires further research. METHODS: In this retrospective analysis, we evaluated 296 hypertensive prostate cancer patients between March 2, 2012, and November 1, 2015. We used Cox regression models and prediction analysis to assess overall survival. Furthermore, we created a nomogram and verified its accuracy using a calibration curve. RESULTS: Of all participants, 101 (34.12%) died. Our multi-factor analysis revealed that MKI67 expression was associated with an increased hazard ratio of death (> fivefold) (Hazard Ratio 5.829, 95% CI 3.349-10.138, p value < 0.01) and progression (twofold) (HR 2.059, 95% CI 1.368-3.102, p value < 0.01). Our Lasso analysis model displayed that several factors, including heart failure, smoking, ACS, serum albumin, Gealson score, prognostic nutritional index, MKI67 expression, surgery, and stage were high risks of prostate cancer. To ensure each covariate's contribution to cancer prognosis, we created a Cox model nomogram, which accurately predicted the risk of death (C-statistic of 0.8289) and had a proper calibration plot for risk assessment. CONCLUSION: MKI67 expression predicts poor outcomes for overall mortality in prostate cancer and hypertension patients. Additionally, our cross-validated multivariate score, which includes MKI67, demonstrated accuracy efficacy of predicting prognosis.

9.
Neuroscience ; 549: 121-137, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38754722

ABSTRACT

Myeloid differentiation primary response gene 88 (MyD88), a downstream molecule directly linked to Toll-like receptor (TLRs) and IL1 receptor, has been implicated in ischemia-reperfusion injury across various organs. However, its role in cerebral ischemia-reperfusion injury (CIRI) remains unclear. Five transient middle cerebral artery occlusion (tMCAO) microarray datasets were obtained from the Gene Expression Omnibus (GEO) database. We screened these datasets for differentially expressed genes (DEGs) using the GSE35338 and GSE58720 datasets and performed weighted gene co-expression network analysis (WGCNA) using the GSE30655, GSE28731, and GSE32529 datasets to identify the core module related to tMCAO. A protein-protein interaction (PPI) network was constructed using the intersecting DEGs and genes in the core module. Finally, we identified Myd88 was the core gene. In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) validated that TNFα, IL17, and MyD88 signaling pathways were significantly enriched in tMCAO. Subsequently, we investigated the mechanistic role of MyD88 in the tMCAO model using male C57BL/6 mice. MyD88 expression increased significantly 24 h after reperfusion. After intraperitoneal administration of TJ-M2010-5, a MyD88-specific inhibitor, during reperfusion, the infarction volumes in the mice were ameliorated. TJ-M2010-5 inhibits the activation of microglia and astrocytes. Moreover, it attenuates the upregulation of inflammatory cytokines TNFα, IL17, and MMP9 while preserving the expression level of ZO1 after tMCAO, thereby safeguarding against blood-brain barrier (BBB) disruption. Finally, our findings suggest that MyD88 regulates the IRAK4/IRF5 signaling pathway associated with microglial activation. MyD88 participates in CIRI by regulating the inflammatory response and BBB damage following tMCAO.

10.
Sci Total Environ ; 938: 173521, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38802012

ABSTRACT

Forests are experiencing increasingly severe drought stress worldwide. Although most studies have quantified how tree growth was affected by extreme droughts, how trees recover from different drought intensities are still poorly understood for different species. We used a network of tree-ring data comprising 731 Quercus mongolica trees across 29 sites, 312 Larix olgensis Henry trees from 13 sites, and 818 Larix principis-rupprechtii trees from 34 sites, covering most of their distribution range in northern China, to compare the influences of drought intensity on post-drought recovery. The results showed that summer droughts had strong negative influences on tree growth. Post-drought growth varied with drought intensity for the three species. Larix species exhibited strong legacy effects after severe droughts, which is related to the lack of compensatory growth. In contrast, the compensatory growth of Q. mongolica reduced drought legacy effect. However, the compensatory growth of Q. mongolica gradually weaken with increasing drought intensity and disappeared during severe drought. Our findings indicated that influence of drought on Q. mongolica growth mainly shown in drought years, but Larix species suffered from long-term drought legacy effects, implying Q. mongolica rapidly recovered from droughts but Larix species need several years to recover from droughts, thus the two genera have different recovery strategy.

11.
J Transl Med ; 22(1): 485, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773518

ABSTRACT

BACKGROUND: The maintenance of mitochondrial homeostasis is critical for tumor initiation and malignant progression because it increases tumor cell survival and growth. The molecular events controlling mitochondrial integrity that facilitate the development of hepatocellular carcinoma (HCC) remain unclear. Here, we report that UBX domain-containing protein 1 (UBXN1) hyperactivation is essential for mitochondrial homeostasis and liver tumorigenesis. METHODS: Oncogene-induced mouse liver tumor models were generated with the Sleeping Beauty (SB) transposon delivery system. Assessment of HCC cell growth in vivo and in vitro, including tumour formation, colony formation, TUNEL and FACS assays, was conducted to determine the effects of UBXN1 on HCC cells, as well as the involvement of the UBXN1-prohibitin (PHB) interaction in mitochondrial function. Coimmunoprecipitation (Co-IP) was used to assess the interaction between UBXN1 and PHB. Liver hepatocellular carcinoma (LIHC) datasets and HCC patient samples were used to assess the expression of UBXN1. RESULTS: UBXN1 expression is commonly upregulated in human HCCs and mouse liver tumors and is associated with poor overall survival in HCC patients. UBXN1 facilitates the growth of human HCC cells and promotes mouse liver tumorigenesis driven by the NRas/c-Myc or c-Myc/shp53 combination. UBXN1 interacts with the inner mitochondrial membrane protein PHB and sustains PHB expression. UBXN1 inhibition triggers mitochondrial damage and liver tumor cell apoptosis. CONCLUSIONS: UBXN1 interacts with PHB and promotes mitochondrial homeostasis during liver tumorigenesis.


Subject(s)
Carcinogenesis , Carcinoma, Hepatocellular , Homeostasis , Liver Neoplasms , Mitochondria , Prohibitins , Animals , Humans , Mice , Apoptosis , Carcinogenesis/pathology , Carcinogenesis/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Mitochondria/metabolism , Protein Binding , Repressor Proteins/metabolism
12.
Bioorg Chem ; 148: 107478, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788366

ABSTRACT

The current standard treatment for ovarian cancer consists of surgery to reduce the size of the tumor, followed by treatment with chemotherapeutic drugs, which have major side effects. Therefore, finding a new natural product drug with fewer side effects is a strategy. Delphinium brunonianum (D. brunonianum) is a traditional Tibetan medicine, mainly from southern Tibet, China, whereas the chemical constituents in this plant remain elusive. The major metabolites in the dichloromethane fraction of D. brunonianum were analyzed and purified by HPLC and various column chromatography techniques. Nine diterpenoid alkaloids (1-9) and one amide alkaloid (10) were isolated from D. brunonianum, including three novel C19-type diterpenoid alkaloids (Brunonianines D-F) (1-3). Their structures were elucidated by 1D/2D NMR, HR-ESI-MS and single-crystal X-ray diffraction analyses. All compounds were evaluated for toxicity in four tumor cell lines. Most of the compounds exhibited potent inhibitory effects on Skov-3 cell lines, with IC50 values ranging from 2.57 to 8.05 µM. The western blotting experiment was used to further analyze the expression levels of molecules in the Bax/Bcl-2/Caspase-3 signaling pathway for compound 1. Molecular docking was performed to predict the binding modes of Brunonianine D with target proteins. In vivo experiments were also performed and evaluated in real time by monitoring the size of the Skov-3 tumor. Additionally, tumor H&E staining and the TUNEL assay used to evaluate anti-tumor effects.


Subject(s)
Alkaloids , Antineoplastic Agents, Phytogenic , Apoptosis , Cell Proliferation , Delphinium , Diterpenes , Drug Screening Assays, Antitumor , Ovarian Neoplasms , Female , Humans , Delphinium/chemistry , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Structure-Activity Relationship , Animals , Molecular Structure , Diterpenes/pharmacology , Diterpenes/chemistry , Diterpenes/isolation & purification , Cell Proliferation/drug effects , Apoptosis/drug effects , Mice , Dose-Response Relationship, Drug , Cell Line, Tumor , Molecular Docking Simulation
13.
Chemosphere ; 359: 142262, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38714252

ABSTRACT

Industrialization has caused a significant global issue with cadmium (Cd) pollution. In this study, Biochar (Bc), generated through initial pyrolysis of rice straw, underwent thorough mixing with magnetized bentonite clay, followed by activation with KOH and subsequent pyrolysis. Consequently, a magnetized bentonite modified rice straw biochar (Fe3O4@B-Bc) was successfully synthesized for effective treatment and remediation of this problem. Fe3O4@B-Bc not only overcomes the challenges associated with the difficult separation of individual bentonite or biochar from water, but also exhibited a maximum adsorption capacity of Cd(II) up to 241.52 mg g-1. The characterization of Fe3O4@B-Bc revealed that its surface was rich in C, O and Fe functional groups, which enable efficient adsorption. The quantitative calculation of the contribution to the adsorption mechanism indicates that cation exchange and physical adsorption accounted for 65.87% of the total adsorption capacity. In conclusion, Fe3O4@B-Bc can be considered a low-cost and recyclable green adsorbent, with broad potential for treating cadmium-polluted water.


Subject(s)
Bentonite , Cadmium , Charcoal , Oryza , Water Pollutants, Chemical , Cadmium/chemistry , Cadmium/analysis , Oryza/chemistry , Charcoal/chemistry , Adsorption , Bentonite/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Water Purification/methods
14.
Animals (Basel) ; 14(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731293

ABSTRACT

OBJECTIVE: Non-alcoholic fatty liver disease (NAFLD) is strongly associated with hyperlipidemia, which is closely related to high levels of sugar and fat. ß-sitosterol is a natural product with significant hypolipidemic and cholesterol-lowering effects. However, the underlying mechanism of its action on aquatic products is not completely understood. METHODS: A high-fat diet (HFD)-induced NAFLD zebrafish model was successfully established, and the anti-hyperlipidemic effect and potential mechanism of ß-sitosterol were studied using oil red O staining, filipin staining, and lipid metabolomics. RESULTS: ß-sitosterol significantly reduced the accumulation of triglyceride, glucose, and cholesterol in the zebrafish model. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that differential lipid molecules in ß-sitosterol mainly regulated the lipid metabolism and signal transduction function of the zebrafish model. ß-sitosterol mainly affected steroid biosynthesis and steroid hormone biosynthesis in the zebrafish model. Compared with the HFD group, the addition of 500 mg/100 g of ß-sitosterol significantly inhibited the expression of Ppar-γ and Rxr-α in the zebrafish model by at least 50% and 25%, respectively. CONCLUSIONS: ß-sitosterol can reduce lipid accumulation in the zebrafish model of NAFLD by regulating lipid metabolism and signal transduction and inhibiting adipogenesis and lipid storage.

15.
Carbohydr Polym ; 337: 122190, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710564

ABSTRACT

Starch structure is often characterized by the chain-length distribution (CLD) of the linear molecules formed by breaking each branch-point. More information can be obtained by expanding into a second dimension: in the present case, the total undebranched-molecule size. This enables answers to questions unobtainable by considering only one variable. The questions considered here are: (i) are the events independent which control total size and CLD, and (ii) do ultra-long amylopectin (AP) chains exist (these chains cannot be distinguished from amylose chains using simple size separation). This was applied here to characterize the structures of one normal (RS01) wheat and two high-amylose (AM) mutant wheats (an SBEIIa knockout and an SBEIIa and SBEIIb knockout). Absolute ethanol was used to precipitate collected fractions, then size-exclusion chromatography for total molecular size and for the size of branches. The SBEIIa and SBEIIb mutations significantly increased AM and IC contents and chain length. The 2D plots indicated the presence of small but significant amounts of long-chain amylopectin, and the asymmetry of these plots shows that the corresponding mechanisms share some causal effects. These results could be used to develop plants producing improved starches, because different ranges of the chain-length distribution contribute independently to functional properties.


Subject(s)
Amylopectin , Amylose , Starch Synthase , Triticum , Triticum/metabolism , Triticum/chemistry , Triticum/genetics , Amylopectin/chemistry , Amylopectin/biosynthesis , Amylose/chemistry , Amylose/biosynthesis , Starch Synthase/genetics , Starch Synthase/metabolism , Starch Synthase/chemistry , Starch/chemistry , Starch/biosynthesis , Starch/metabolism , Mutation , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism
16.
FEBS J ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712529

ABSTRACT

Docetaxel (Doc) currently serves as the primary first-line treatment for patients with castrate-resistant prostate cancer (CRPC). Erastin, a small molecule compound, can trigger inhibition of the cystine-glutamate reverse transport system and other pathways, leading to iron-dependent cell death (ferroptosis). Beyond its role in inducing cancer cell death, erastin demonstrates potential when combined with chemotherapy drugs to heighten cancer cell drug susceptibility. However, the augmentation by erastin of the effects of Doc treatment on prostate cancer, and the underlying mechanisms involved, remain unclear. In the present study, we determined the role and the underlying molecular mechanism of erastin against CRPC. The results showed that CRPC cell lines were resistant to Doc, and the expression of ferroptosis-related factors in drug-resistant cell lines was downregulated. Erastin, in synergy with Doc, exerts a pro-apoptotic effect. Erastin significantly inhibited the activity of ATP-binding cassette subfamily B member 1 (ABCB1) but did not change its protein expression and localization. Finally, in mice, erastin treatment dramatically reduced tumor growth in vivo. Taken together, our findings demonstrate that erastin enhances Doc-induced apoptosis to a certain extent and reverses Doc resistance in prostate cancer by inhibiting the activity of multidrug-resistant protein ABCB1.

17.
Vasc Endovascular Surg ; : 15385744241253736, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709191

ABSTRACT

OBJECTIVES: To assess the safety and efficacy of the combination of brachial artery (BA) cutdown with purse-string suture (PSS) for BA preclosure during fenestrated thoracic endovascular aortic repair (f-TEVAR). METHODS: We reviewed the consecutive data in our center from January 2022 to May 2023. Clinical data were analyzed retrospectively, including the baseline characteristics, procedural details, complications, and outcomes. Dichotomous data were summarized as absolute values and percentages. Continuous variables were presented as median values and interquartile ranges (IQRs). All patients underwent arterial cutdown with the PSS technique for BA preclosure. The technique was considered successful when complete hemostasis was achieved and confirmed by ultrasonography 24 h postoperatively. The patients were followed up 30 days postoperatively for access-related complications. RESULTS: Forty-eight patients who underwent f-TEVAR with 48 BA access sites were included [36 males and 12 females; median age: 62 (IQR: 30-78) years]. The median body mass index was 27.3 (IQR: 21.2-32.7) kg/m2. The median access establishing and closing times were 7.8 (IQR: 6-9.3) min and 3.7 (IQR: 2.5-5) min, respectively. The median operative time and length of stay were 75 (IQR: 63-87) min and 7 (IQR: 5-9) days, respectively. Although the success rate was 100%, partial numbness in the median nerve distribution was noted in 1 patient in the forearm. This resolved spontaneously and no permanent neurological problem was seen. No other access-related complications were noted, and the total complication rate was 2.1% (1/48). CONCLUSIONS: BA preclosure with the PSS technique is safe and effective for left subclavian artery revascularization in Stanford B aortic dissection and can be another option for access closure during f-TEVAR.

18.
Research (Wash D C) ; 7: 0335, 2024.
Article in English | MEDLINE | ID: mdl-38766644

ABSTRACT

Cuproptosis-based cancer nanomedicine has received widespread attention recently. However, cuproptosis nanomedicine against pancreatic ductal adenocarcinoma (PDAC) is severely limited by cancer stem cells (CSCs), which reside in the hypoxic stroma and adopt glycolysis metabolism accordingly to resist cuproptosis-induced mitochondria damage. Here, we leverage hyperbaric oxygen (HBO) to regulate CSC metabolism by overcoming tumor hypoxia and to augment CSC elimination efficacy of polydopamine and hydroxyethyl starch stabilized copper-diethyldithiocarbamate nanoparticles (CuET@PH NPs). Mechanistically, while HBO and CuET@PH NPs inhibit glycolysis and oxidative phosphorylation, respectively, the combination of HBO and CuET@PH NPs potently suppresses energy metabolism of CSCs, thereby achieving robust tumor inhibition of PDAC and elongating mice survival importantly. This study reveals novel insights into the effects of cuproptosis nanomedicine on PDAC CSC metabolism and suggests that the combination of HBO with cuproptosis nanomedicine holds significant clinical translation potential for PDAC patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...