Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Chin Med ; 15: 43, 2020.
Article in English | MEDLINE | ID: mdl-32411289

ABSTRACT

BACKGROUND: Apocynum venetum leaves are used as a kind of phytomedicine and the main ingredient in some traditional Chinese medicine products for the relief of colitis. To understand the bioactive constituents of A. venetum L., we did a phytochemistry study and investigated anti-Inflammatory effects of compounds and explored the underlying mechanisms. METHODS: We isolated compounds from ethanol extract of A. venetum L. leaf and detected the most effective compound by NO inhibition assay. We investigated anti-Inflammatory effects on dextran sulfate sodium (DSS)-induced colitis mice and lipopolysaccharide (LPS)-stimulated RAW264.7 cells. The disease activity index was determined by scores of body weight loss, diarrhea and rectal bleeding; histological damage was analyzed by H&E staining; macrophages change in the colon were analyzed by immunohistochemistry (IHC); myeloperoxidase activity was measured by myeloperoxidase assay kits; levels of proinflammatory cytokines were determined by qPCR and ELISA; protein production such as COX-2, iNOS, STAT3 and ERK1/2 were determined by western blotting. RESULTS: We isolated uvaol from ethanol extract of A. venetum L. leaf and found uvaol has excellent potential of inhibiting NO production. We further found uvaol could attenuate disease activity index (DAI), colon shortening, colon injury, and colonic myeloperoxidase activity in DSS-induced colitis mice. Moreover, uvaol significantly reduces mRNA expression and production of pro-inflammatory cytokines (TNF-α, IL-6, IL-1ß, and MCP-1) and infiltration of macrophages in colonic tissues of colitis mice. Studies on LPS challenged murine macrophage RAW246.7 cells also revealed that uvaol reduces mRNA expression and production of pro-inflammatory cytokines and mediators. Mechanically, uvaol inhibits the pro-inflammatory ERK/STAT3 axis in both inflamed colonic tissues and macrophages. CONCLUSIONS: A. venetum leaf contains uvaol and uvaol has potent anti-inflammatory effects on DSS-induced experimental colitis and LPS-stimulated RAW264.7 macrophage cells. These results suggest uvaol is a prospective anti-inflammatory agent for colonic inflammation.

2.
Food Funct ; 7(7): 3017-30, 2016 Jul 13.
Article in English | MEDLINE | ID: mdl-27326537

ABSTRACT

There are many herbal teas that are found in nature that may be effective at treating the symptoms and also shortening the duration of viral infections. When combating viral infections, T lymphocytes are an indispensable part of human acquired immunity. However, studies on the use of natural products in stimulating lymphocyte-mediated interferon-gamma (IFN-γ) production are very limited. In this study, we found that acteoside, a natural phenylpropanoid glycoside from Kuding Tea, enhanced IFN-γ production in mouse lymphocytes in a dose-dependent manner, particularly in the CD4+ and CD8+ subsets of T lymphocytes. To this end, we suggest that the antiviral activity of acteoside was highly correlated to its inducing ability of IFN-γ production. Mechanistically, the activation of T-bet enhanced the promoter of IFN-γ and subsequently resulted in an increased IFN-γ production in T cells. Collectively, we have found a natural product with the capacity to selectively enhance mouse T cell IFN-γ production. Given the role of IFN-γ in the immune system, further studies to clarify the role of acteoside in inducing IFN-γ and prevention of viral infection are needed.


Subject(s)
Antiviral Agents/pharmacology , Biological Products/pharmacology , Glucosides/pharmacology , Interferon-gamma/metabolism , Phenols/pharmacology , Animals , Apoptosis/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Dose-Response Relationship, Immunologic , Glycosides/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Lymphocyte Activation/drug effects , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Promoter Regions, Genetic , RAW 264.7 Cells , T-Box Domain Proteins/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Teas, Herbal/analysis
3.
Yao Xue Xue Bao ; 50(9): 1192-6, 2015 Sep.
Article in Chinese | MEDLINE | ID: mdl-26757559

ABSTRACT

The study aimed to investigate the effects of small ubiquitin-related modifier (SUMO) specific protease 1 (SENP1) on human PXR-mediated MDR1 transcriptional activity and mRNA expression. Empty vector and expression plasmids, including PXR, SENP1 and SENP1 mutant (SENP1m) were transiently transfected into HepG2 and LS174T cells using Lipo2000. Transcriptional activity was detected by dual luciferase reporter gene assay, and mRNA level was measured using real-time polymerase chain reaction. The results showed that SENP1 could remarkably reduce the rifampicin (RIF)-induced MDR1 reporter activity and mRNA level in hPXR over expressed HepG2 and LS174T cells (P < 0.05), whereas adding SENP1m restored the RIF-induced increases (P < 0.05). These results indicated that SENP1 could repress the RIF-induced hPXR-mediated MDR1 transcriptional activity and mRNA expression.


Subject(s)
Endopeptidases/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Transcriptional Activation , ATP Binding Cassette Transporter, Subfamily B/metabolism , Cysteine Endopeptidases , Gene Expression , Hep G2 Cells , Humans , Peroxisome-Targeting Signal 1 Receptor , RNA, Messenger
4.
Biomed Chromatogr ; 21(5): 473-9, 2007 May.
Article in English | MEDLINE | ID: mdl-17357178

ABSTRACT

A liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed and validated for determining tanshinone IIA in rat tissues. After a single step liquid-liquid extraction with diethyl ether, tanshinone IIA and loratadine (internal standard) was subjected to LC/MS/MS analysis using positive electro-spray ionization under selected reaction monitoring mode. Chromatographic separation of tanshinone IIA and loratadine was achieved on a Hypersil BDS C(18) column (i.d. 2.1 x 50 mm, 5 microm) with a mobile phase consisting of methanol-1% formic acid (90:10, v/v) at a flow rate of 300 microL/min. The intra-day and inter-day precision of the method were less than 10.2 and 12.4%, respectively. The intra-day and inter-day accuracies ranged from 99.7 to 109.7%. The lowest limit of quantification for tanshinone IIA was 1 ng/mL. The method was applied to a tanshinone IIA tissue distribution study after an oral dose of 60 mg/kg to rats. Tanshinone IIA tissue concentrations decreased in the order of stomach > small intestine > lung > liver > fat > muscle > kidneys > spleen > heart > plasma > brain > testes. Tanshinone IIA still could be detected in most of the tissues at 20 h post-dosing. These results indicate that the LC/MS/MS method was rapid and sensitive to quantify tanshinone IIA in different rat tissues.


Subject(s)
Chromatography, High Pressure Liquid/methods , Phenanthrenes/pharmacokinetics , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Abietanes , Animals , Male , Rats , Rats, Sprague-Dawley , Reference Standards , Reproducibility of Results , Sensitivity and Specificity , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...