Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731886

ABSTRACT

The cerebrovascular endothelial cells with distinct characteristics line cerebrovascular blood vessels and are the fundamental structure of the blood-brain barrier, which is important for the development and homeostatic maintenance of the central nervous system. Cre-LoxP system-based spatial gene manipulation in mice is critical for investigating the physiological functions of key factors or signaling pathways in cerebrovascular endothelial cells. However, there is a lack of Cre recombinase mouse lines that specifically target cerebrovascular endothelial cells. Here, using a publicly available single-cell RNAseq database, we screened the solute carrier organic anion transporter family member 1a4 (Slco1a4) as a candidate marker of cerebrovascular endothelial cells. Then, we generated an inducible Cre mouse line in which a CreERT2-T2A-tdTomato cassette was placed after the initiation codon ATG of the Slco1a4 locus. We found that tdTomato, which can indicate the endogenous Slco1a4 expression, was expressed in almost all cerebrovascular endothelial cells but not in any other non-endothelial cell types in the brain, including neurons, astrocytes, oligodendrocytes, pericytes, smooth muscle cells, and microglial cells, as well as in other organs. Consistently, when crossing the ROSA26LSL-EYFP Cre reporter mouse, EYFP also specifically labeled almost all cerebrovascular endothelial cells upon tamoxifen induction. Overall, we generated a new inducible Cre line that specifically targets cerebrovascular endothelial cells.


Subject(s)
Brain , Endothelial Cells , Integrases , Animals , Mice , Endothelial Cells/metabolism , Integrases/metabolism , Integrases/genetics , Brain/metabolism , Gene Knock-In Techniques , Mice, Transgenic , Blood-Brain Barrier/metabolism , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Tamoxifen/pharmacology , Red Fluorescent Protein
2.
Front Nutr ; 11: 1389417, 2024.
Article in English | MEDLINE | ID: mdl-38746938

ABSTRACT

Objective: This study aims to evaluate the origin of the neonatal gut microbiota on the 14th day and probiotic intervention in the third trimester. Methods: Samples were obtained from a total of 30 pregnant individuals and their offspring, divided into a control group with no intervention and a probiotic group with live combined Bifidobacterium and Lactobacillus tablets, analyzing by 16S rRNA amplicon sequencing of the V4 region to evaluate the composition of them. Non-metric multidimensional scaling and SourceTracker were used to evaluate the origin of neonatal gut microbiota. Results: We found that the microbiota in the neonatal gut at different times correlated with that in the maternal microbiota. The placenta had more influence on meconium microbiota. Maternal gut had more influence on neonatal gut microbiota on the 3rd day and 14th day. We also found that the maternal gut, vaginal, and placenta microbiota at full term in the probiotic group did not have a significantly different abundance of Bifidobacterium, Lactobacillus, or Streptococcus. However, some other bacteria changed in the maternal gut and their neonatal gut in the probiotic group.

3.
Heliyon ; 10(9): e30702, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38765115

ABSTRACT

Background: Pre-eclampsia (PE) is a syndrome with no specific pathological mechanism and is specific to pregnancy. The combined analysis of proteomics and transcriptomics possesses many benefits for treating this disease. m6A modification plays a major role in PE; however, mechanism have not been studied clearly. This study investigated the potential mechanism underlying the role of m6A in PE. Methods: Mass spectrometry-based label-free quantitative proteomics and transcriptomics experiments were conducted on the placenta of patients with pre-eclampsia and normal pregnancies, and the two omics were followed by joint analysis. Total m6A modification in placental tissues, HTR8/SVneo cells, and JEG-3 cells was measured by dot blot. The levels of RBM15 and CD82 in tissues and cells were detected using qPCR. The protein levels of G3BP1, RBM15, MMP-2, YTHDF2, and MMP-9 were measured by western blotting. The function, migration, and invasion characteristics of HTR8/SVneo and JEG-3 cells were measured using Transwell assays. SRAMP predicted the m6A modification site in the CD82 mRNA 3'UTR, and this was confirmed using luciferase activity and YTHDF2-RIP. Results: m6A modification was promoted in the PE group, and the RBM15 abundance was increased. Overexpression of RBM15 increased m6A modification. However, overexpression of RBM15 suppressed the expression of MMP-2 and MMP-9 and also the migratory and invasive capabilities of HTR8/SVneo and JEG-3 cells. CD82 expression levels were decreased in PE, and CD82 expression was confirmed via qPCR, western blotting and immunofluorescence. Furthermore, RBM15 overexpression reduced CD82 mRNA and protein levels. Luciferase activity and YTHDF2-RIP results verified that overexpression of RBM15 promoted the binding ability between YTHDF2 and the CD82 3'UTR, thereby decreasing CD82 expression. Finally, CD82 overexpression reversed the effect of RBM15 overexpression on the expression of MMP-2 and MMP-9 and on the migratory and invasive capabilities of the cells. Conclusions: Overexpression of RBM15 hindered the migratory and invasive capabilities of trophoblasts, while concurrently enhancing m6A modification. The potential mechanism was that overexpression of RBM15 promoted the binding capability between YTHDF2 and CD82 3'UTR and decrease the expression of CD82. Thus, this study provides a theoretical basis for the treatment of PE.

4.
BMC Pregnancy Childbirth ; 24(1): 245, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582906

ABSTRACT

BACKGROUND AND AIMS: To investigate the impact of intrahepatic cholestasis of pregnancy (ICP) with hepatitis B virus (HBV) infection on pregnancy outcomes. METHODS: We selected 512 pregnant women, collected the data including maternal demographics, main adverse pregnancy outcomes and maternal HBV infected markers HBeAg and HBV-DNA loads status, then have a comparative analysis. RESULTS: There were 319 solitary ICP patients without HBV infection (Group I) and 193 ICP patients with HBV infection. Of the latter, there were 118 cases with abnormal liver function(Group II) and 80 cases with normal liver function(Group III). All HBV-infected pregnant women with ICP were divided into hepatitis Be antigen (HBeAg)-positive group (102 cases) and HBeAg-negative group (91 cases), according to the level of the serum HBeAg status; and into high viral load group (92 cases), moderate viral load group (46 cases) and low viral load group (55 cases) according to the maternal HBV-DNA level. Group II had a higher level of serum total bile acids, transaminase, bilirubin as well as a higher percentage of premature delivery, neonatal intensive care unit (NICU) admission and meconium-stained amniotic fluid (MSAF) compared with the other two groups(P < 0.05), but there were no significant differences in the above indicators between the Group I and Group III. Among the HBV-infected patients with ICP, HBeAg-positive group had a higher level of serum transaminase, bilirubin and bile acid as well as earlier gestational weeks of delivery, lower birth weight of new-borns and a higher rate of NICU admission than HBeAg-negative group (P < 0.05). Those with a high viral load (HBV-DNA > 106 IU/ml) had a higher level of transaminase, bilirubin, and bile acid as well as shorter gestational weeks of delivery, lower birth weight of new-borns and a higher rate of NICU admission compared with those with a low or moderate viral load (P < 0.05). CONCLUSION: HBV-infected pregnant women with ICP combined with abnormal liver function have more severe liver damage, a higher percentage of preterm birth and NICU admission. HBeAg-positive status and a high HBV-DNA load will increase the severity of conditions in HBV-infected pregnant women with ICP. HBV-infected patients with ICP who have abnormal liver function, HBeAg-positive or a high viral load should be treated more actively.


Subject(s)
Cholestasis, Intrahepatic , Hepatitis B , Pregnancy Complications, Infectious , Pregnancy Complications , Premature Birth , Pregnancy , Female , Infant, Newborn , Humans , Hepatitis B virus , Retrospective Studies , Hepatitis B e Antigens , Birth Weight , DNA, Viral , Hepatitis B Surface Antigens , Premature Birth/epidemiology , Hepatitis B/complications , Pregnancy Outcome/epidemiology , Transaminases , Bile Acids and Salts , Bilirubin
5.
Nat Commun ; 15(1): 2813, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561336

ABSTRACT

CCCTC-binding factor (CTCF), a ubiquitously expressed and highly conserved protein, is known to play a critical role in chromatin structure. Post-translational modifications (PTMs) diversify the functions of protein to regulate numerous cellular processes. However, the effects of PTMs on the genome-wide binding of CTCF and the organization of three-dimensional (3D) chromatin structure have not been fully understood. In this study, we uncovered the PTM profiling of CTCF and demonstrated that CTCF can be O-GlcNAcylated and arginine methylated. Functionally, we demonstrated that O-GlcNAcylation inhibits CTCF binding to chromatin. Meanwhile, deficiency of CTCF O-GlcNAcylation results in the disruption of loop domains and the alteration of chromatin loops associated with cellular development. Furthermore, the deficiency of CTCF O-GlcNAcylation increases the expression of developmental genes and negatively regulates maintenance and establishment of stem cell pluripotency. In conclusion, these results provide key insights into the role of PTMs for the 3D chromatin structure.


Subject(s)
Genome , Protein Processing, Post-Translational , CCCTC-Binding Factor/metabolism , Cell Differentiation , Chromatin
6.
BMC Pregnancy Childbirth ; 24(1): 179, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454374

ABSTRACT

BACKGROUND: Although pregnancy complicated by liver cirrhosis is rare, women with cirrhosis experience increased adverse pregnancy outcomes. This study aimed to evaluate pregnancy outcomes in women with liver cirrhosis and develop a predictive model using maternal factors for preterm birth in such pregnancies. METHODS: A retrospective analysis was conducted on pregnancy outcomes of a cirrhosis group (n = 43) and a non-cirrhosis group (n = 172) in a university hospital between 2010 and 2022. Logistic regression evaluated pregnancy outcomes, and a forward stepwise logistic regression model was designed to predict preterm birth in pregnant women with cirrhosis. The model's predictive performance was evaluated using the receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC). RESULTS: The incidence of cirrhosis during pregnancy was 0.06% (50/81,554). Pregnant women with cirrhosis faced increased risks of cesarean section, preterm birth, intrahepatic cholestasis of pregnancy, thrombocytopenia, and postpartum hemorrhage. In pregnant women with cirrhosis, preterm birth risk significantly increased at an incidence rate of 46.51% (20/43). According to the prediction model, the key predictors of preterm birth in pregnant women with cirrhosis were intrahepatic cholestasis of pregnancy and total bilirubin. The model demonstrated accurate prediction, with an AUC of 0.847, yielding a model accuracy of 81.4%. CONCLUSIONS: Pregnant women with cirrhosis face a heightened risk of adverse obstetric outcomes, particularly an increased incidence of preterm birth. The preliminary evidence shows that the regression model established in our study can use the identified key predictors to predict preterm birth in pregnant women with cirrhosis, with high accuracy.


Subject(s)
Cholestasis, Intrahepatic , Pregnancy Complications , Premature Birth , Pregnancy , Infant, Newborn , Female , Humans , Premature Birth/epidemiology , Premature Birth/etiology , Retrospective Studies , Cesarean Section/adverse effects , Pregnancy Outcome/epidemiology , Liver Cirrhosis/complications , Liver Cirrhosis/epidemiology
7.
Heliyon ; 10(3): e24698, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38314279

ABSTRACT

Microbiota in pregnant time is vital to healthy of pregnant women and their offspring. However, few study evaluate the composition of the microbiota of health pregnancy, placenta and their newborns at different stages and the origin of the placental microbiota. Samples were obtained from a total of 31 pregnant individuals and their offspring, analyzing by 16S rRNA amplicon sequencing of the V4 region to evaluate the composition and variation of them. We found that the microbiota of pregnant individuals changes in the third trimester. The placental microbiota has its own specific dominant microbiota. The placental microbiota is correlated with the pregnancy microbiota in the gut and vagina at 32-34 weeks but not at full term. The gut microbiota in newborns changes over the first 14 days.

8.
Cell Biol Toxicol ; 40(1): 1, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38252352

ABSTRACT

Acetaminophen (APAP) stands as the predominant contributor to drug-induced liver injury (DILI), and limited options are available. ß-Arrestin1 (ARRB1) is involved in numerous liver diseases. However, the role of ARRB1 in APAP-induced liver injury remained uncertain. Wild-type (WT) and ARRB1 knockout (KO) mice were injected with APAP and sacrificed at the indicated times. The histological changes, inflammation, endoplasmic reticulum (ER) stress, and apoptosis were then evaluated. Hepatic cell lines AML-12 and primary hepatocytes were used for in vitro analyses. Systemic ARRB1-KO mice were susceptible to APAP-induced hepatotoxicity, as indicated by larger areas of centrilobular necrosis area and higher levels of ALT, AST, and inflammation level. Moreover, ARRB1-KO mice exhibited increased ER stress (indicated by phosphorylated α subunit of eukaryotic initiation factor 2 (p-eIF2α)-activating transcription factor 4 (ATF4)-CCAAT-enhancer-binding protein homologous protein (CHOP)) and apoptosis (indicated by cleaved caspase 3). Further rescue experiments demonstrated that the induction of apoptosis was partially mediated by ER stress. Overexpression of ARRB1 alleviated APAP-induced ER stress and apoptosis. Moreover, co-IP analysis revealed that ARRB1 directly bound to p-eIF2α and eIF2α. ARRB1 protected against APAP-induced hepatoxicity through targeting ER stress and apoptosis. ARRB1 is a prospective target for treating APAP-induced DILI.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Endoplasmic Reticulum Stress , beta-Arrestin 1 , Animals , Mice , Acetaminophen/toxicity , Activating Transcription Factor 4 , Apoptosis , Inflammation , Mice, Knockout , Necrosis , beta-Arrestin 1/genetics , Eukaryotic Initiation Factor-2
9.
Acta Pharm Sin B ; 13(1): 100-112, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36815038

ABSTRACT

Chronic alcohol consumption causes liver steatosis, cell death, and inflammation. Melatonin (MLT) is reported to alleviate alcoholic liver disease (ALD)-induced injury. However, its direct regulating targets in hepatocytes are not fully understood. In the current study, a cell-based screening model and a chronic ethanol-fed mice ALD model were used to test the protective mechanisms of MLT. MLT ameliorated ethanol-induced hepatocyte injury in both cell and animal models (optimal doses of 10 µmol/L and 5 mg/kg, respectively), including lowered liver steatosis, cell death, and inflammation. RNA-seq analysis and loss-of-function studies in AML-12 cells revealed that telomerase reverse transcriptase (TERT) was a key downstream effector of MLT. Biophysical assay found that epidermal growth factor receptor (EGFR) on the hepatocyte surface was a direct binding and regulating target of MLT. Liver specific knock-down of Tert or Egfr in the ALD mice model impaired MLT-mediated liver protection, partly through the regulation of nuclear brahma-related gene-1 (BRG1). Long-term administration (90 days) of MLT in healthy mice did not cause evident adverse effect. In conclusion, MLT is an efficacious and safe agent for ALD alleviation. Its direct regulating target in hepatocytes is EGFR and downstream BRG1-TERT axis. MLT might be used as a complimentary agent for alcoholics.

10.
Front Immunol ; 13: 900556, 2022.
Article in English | MEDLINE | ID: mdl-36311780

ABSTRACT

Up to now, there has been insufficient clinical data to support the safety and effects of vaccination on pregnancy post COVID-19 vaccination. The γδ-T cells are considered an important component in the immune system to fight against viral infection and exhibit critical roles throughout the pregnancy period. However, the immunological roles of γδ-T cells in pregnant women with the COVID-19 vaccination remain unclear. Therefore, the objective of this study is to investigate the alteration of frequency and expression pattern of activation receptors and inhibitory receptors in γδ-T cell and its subsets in peripheral blood samples collected from non-pregnant vaccinated women, vaccinated pregnant women, and unvaccinated pregnant women. Our findings indicated that the frequency of CD3+γδ-T+ cells is lower in vaccinated pregnant women than in unvaccinated pregnant women. But no significant difference was found in the frequency of CD3+γδ-T+ cells between non-pregnant vaccinated women and vaccinated pregnant women. In addition, there were no significant differences in the frequencies of CD3+γδ-T+Vδ1+T cells, CD3+γδ-T+Vδ2+T cells, CD3+γδ-T+Vδ1-Vδ2-T cells, and Vδ1+T cell/Vδ2+T cell ratio between the pregnant women with or without COVID-19 vaccination. Similar results were found after comparing non-pregnant and pregnant women who received the COVID-19 vaccine. However, there was a significant difference in the fraction of Vδ1-Vδ2-T cells in CD3+γδ-T+ cells between non-pregnant vaccinated women and vaccinated pregnant women. The frequency of NKG2D+ cells in Vδ2+T cells was not significantly different in the vaccinated pregnant women when compared to that in unvaccinated pregnant women or non-pregnant vaccinated women. But the percentage of NKG2D+ cells in Vδ1+T cells was the lowest in pregnant women after COVID-19 vaccination. Furthermore, down-regulation of NKP46 and NKP30 were found in Vδ2+T and Vδ1+T cells in the vaccinated pregnant women, respectively. After the vaccination, up-regulation of PD-1 expression in Vδ1+T cells and Vδ2+T cells indicated γδ-T cells could respond to COVID-19 vaccination and display an exhausted phenotype following activation. In conclusion, COVID-19 vaccination influences subtypes of γδ-T cells during pregnancy, but the side effects might be limited. The phenotypical changes of Vδ1+T cells and Vδ2+T cells will be a promising predictor for evaluating the clinical outcome of the COVID-19 vaccine.


Subject(s)
COVID-19 , Receptors, Antigen, T-Cell, gamma-delta , Female , Humans , Pregnancy , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocyte Subsets , COVID-19 Vaccines , NK Cell Lectin-Like Receptor Subfamily K/metabolism , COVID-19/prevention & control , Vaccination
11.
Nanoscale Adv ; 4(7): 1808-1814, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-36132165

ABSTRACT

S4A ((1R,2R,3S)-1,2-propanediol acetal-zeylenone) is one of the derivatives of zeylenone and exhibits superior cytotoxicity against the canine breast cancer cell line CIPp. However, its poor aqueous solubility and toxicity to normal tissue limit its clinical application. Therefore, in order to enhance the anticancer effect of S4A, in this article, BSA/BSA-Au-nanocluster-aggregated core/shell nanoparticles (B-BANC-NPs) were prepared by using bovine serum albumin (BSA) and HAuCl4, and then we further synthesized S4A-BSA-Au NPs which were spherical, with a diameter of about 60 nm. In vitro cytotoxicity assessed by using CCK-8 assay demonstrated that the IC50 value of the S4A-BSA-Au NPs was 10.39 µg mL-1, which was not significantly different from that of S4A (10.45 µg mL-1). In vitro apoptosis assay showed that the apoptosis rate of cells treated with S4A-BSA-Au NPs was 20.12%, which was significantly higher than that of the control group treated with S4A (11.3%). Notably, S4A-BSA-Au NPs were shown to effectively accumulate at tumor sites with fluorescence tracing. Besides, the effect of S4A-BSA-Au NPs on SPARC expression was determined by western blotting, and the result showed that 24 h after applying S4A-BSA-Au NPs, SPARC expression in low, middle and high dosage groups was lower than that of the control group, and the tendency showed dose dependence. The results revealed that S4A-BSA-Au NPs could effectively improve the anti-tumor activity of S4A on canine breast cancer, which may be associated with their abilities to effectively accumulate within tumor and to reduce the expression of SPARC.

12.
Front Immunol ; 13: 939631, 2022.
Article in English | MEDLINE | ID: mdl-35860276

ABSTRACT

Most liver diseases, including acute liver injury, drug-induced liver injury, viral hepatitis, metabolic liver diseases, and end-stage liver diseases, are strongly linked with hormonal influences. Thus, delineating the clinical manifestation and underlying mechanisms of the "sexual dimorphism" is critical for providing hints for the prevention, management, and treatment of those diseases. Whether the sex hormones (androgen, estrogen, and progesterone) and sex-related hormones (gonadotrophin-releasing hormone, luteinizing hormone, follicle-stimulating hormone, and prolactin) play protective or toxic roles in the liver depends on the biological sex, disease stage, precipitating factor, and even the psychiatric status. Lifestyle factors, such as obesity, alcohol drinking, and smoking, also drastically affect the involving mechanisms of those hormones in liver diseases. Hormones deliver their hepatic regulatory signals primarily via classical and non-classical receptors in different liver cell types. Exogenous sex/sex-related hormone therapy may serve as a novel strategy for metabolic liver disease, cirrhosis, and liver cancer. However, the undesired hormone-induced liver injury should be carefully studied in pre-clinical models and monitored in clinical applications. This issue is particularly important for menopause females with hormone replacement therapy (HRT) and transgender populations who want to receive gender-affirming hormone therapy (GAHT). In conclusion, basic and clinical studies are warranted to depict the detailed hepatoprotective and hepatotoxic mechanisms of sex/sex-related hormones in liver disease. Prolactin holds a promising perspective in treating metabolic and advanced liver diseases.


Subject(s)
Liver Neoplasms , Prolactin , Female , Follicle Stimulating Hormone , Gonadal Steroid Hormones , Humans , Luteinizing Hormone
13.
Int J Biol Sci ; 18(2): 652-660, 2022.
Article in English | MEDLINE | ID: mdl-35002515

ABSTRACT

Brain endothelial cells (ECs) are an important component of the blood-brain barrier (BBB) and play key roles in restricting entrance of possible toxic components and pathogens into the brain. However, identifying endothelial genes that regulate BBB homeostasis remains a time-consuming process. Although somatic genome editing has emerged as a powerful tool for discovery of essential genes regulating tissue homeostasis, its application in brain ECs is yet to be demonstrated in vivo. Here, we used an adeno-associated virus targeting brain endothelium (AAV-BR1) combined with the CRISPR/Cas9 system (AAV-BR1-CRISPR) to specifically knock out genes of interest in brain ECs of adult mice. We first generated a mouse model expressing Cas9 in ECs (Tie2Cas9). We selected endothelial ß-catenin (Ctnnb1) gene, which is essential for maintaining adult BBB integrity, as the target gene. After intravenous injection of AAV-BR1-sgCtnnb1-tdTomato in 4-week-old Tie2Cas9 transgenic mice resulted in mutation of 36.1% of the Ctnnb1 alleles, thereby leading to a dramatic decrease in the level of CTNNB1 in brain ECs. Consequently, Ctnnb1 gene editing in brain ECs resulted in BBB breakdown. Taken together, these results demonstrate that the AAV-BR1-CRISPR system is a useful tool for rapid identification of endothelial genes that regulate BBB integrity in vivo.


Subject(s)
Dependovirus , Endothelial Cells/metabolism , Gene Editing , Luminescent Proteins/genetics , beta Catenin/genetics , Animals , Blood-Brain Barrier/metabolism , CRISPR-Cas Systems , Disease Models, Animal , Gene Knockout Techniques , High-Throughput Nucleotide Sequencing , Male , Mice , Mice, Transgenic , NIH 3T3 Cells , RNA, Guide, Kinetoplastida/genetics , Red Fluorescent Protein
14.
Curr Stem Cell Res Ther ; 17(8): 825-838, 2022.
Article in English | MEDLINE | ID: mdl-34620060

ABSTRACT

OBJECTIVE: The efficacy of mesenchymal stem cell (MSC) therapy in acetaminophen-induced liver injury has been investigated in animal experiments, but individual studies with a small sample size cannot be used to draw a clear conclusion. Therefore, we conducted a systematic review and meta-analysis of preclinical studies to explore the potential of using MSCs in acetaminophen- induced liver injury. METHODS: Eight databases were searched for studies reporting the effects of MSCs on acetaminophen hepatoxicity. The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines were used. SYRCLE's risk of bias tool for animal studies was applied to assess the methodological quality. A meta-analysis was performed by using RevMan 5.4 and STATA/ SE 16.0 software. RESULTS: Eleven studies involving 159 animals were included according to PRISMA statement guidelines. Significant associations were found for MSCs with the levels of alanine transaminase (ALT) (standardized mean difference (SMD) - 2.58, p < 0.0001), aspartate aminotransferase (AST) (SMD - 1.75, p = 0.001), glutathione (GSH) (SMD 3.7, p < 0.0001), superoxide dismutase (SOD) (SMD 1.86, p = 0.022), interleukin 10 (IL-10) (SMD 5.14, p = 0.0002) and tumor necrosis factor-α (TNF-α) (SMD - 4.48, p = 0.011) compared with those in the control group. The subgroup analysis showed that the tissue source of MSCs significantly affected the therapeutic efficacy (p < 0.05). CONCLUSION: Our meta-analysis results demonstrate that MSCs could be a potential treatment for acetaminophen- related liver injury. The protocol for this meta-analysis was prospectively registered in PROSPERO (Number: CRD42020212677).


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Acetaminophen , Alanine Transaminase , Animals , Aspartate Aminotransferases , Glutathione , Interleukin-10 , Mesenchymal Stem Cell Transplantation/methods , Superoxide Dismutase , Tumor Necrosis Factor-alpha
15.
Environ Pollut ; 292(Pt B): 118468, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34748887

ABSTRACT

Maternal exposure to PM2.5 has been associated with abnormal glucose tolerance during pregnancy, but little is known about which constituents and sources are most relevant to glycemic effects. We conducted a retrospective cohort study of 1148 pregnant women to investigate associations of PM2.5 chemical components with gestational diabetes mellitus (GDM) and impaired glucose tolerance (IGT) and to identify the most harmful sources in Heshan, China from January 2015 to July 2016. We measured PM2.5 using filter-based method and analyzed them for 28 constituents, including carbonaceous species, water-soluble ions and metal elements. Contributions of PM2.5 sources were assessed by positive matrix factorization (PMF). Logistic regression model was used to estimate composition-specific and source-specific effects on GDM/IGT. Random forest algorithm was applied to evaluate the relative importance of components to GDM and IGT. PM2.5 total mass and several chemical constituents were associated with GDM and IGT across the early to mid-gestation periods, as were the PM2.5 sources fossil fuel/oil combustion, road dust, metal smelting, construction dust, electronic waster, vehicular emissions and industrial emissions. The trimester-specific associations differed among pollutants and sources. The third and highest quartile of elemental carbon, ammonium (NH4+), iron (Fe) and manganese (Mn) across gestation were consistently associated with higher odds of GDM/IGT. Maternal exposures to zinc (Zn), titanium (Ti) and vehicular emissions during the first trimester, and vanadium (V), nickel (Ni), road dust and fossil fuel/oil combustion during the second trimester were more important for GDM/IGT. This study provides important new evidence that maternal exposure to PM2.5 components and sources is significantly related to elevated risk for abnormal glucose tolerance during pregnancy.


Subject(s)
Air Pollutants , Air Pollution , Glucose Intolerance , Air Pollutants/analysis , Air Pollution/analysis , Blood Glucose , Environmental Monitoring , Female , Humans , Particulate Matter/analysis , Pregnancy , Retrospective Studies , Vehicle Emissions/analysis
16.
Bioorg Chem ; 116: 105333, 2021 11.
Article in English | MEDLINE | ID: mdl-34537516

ABSTRACT

Natural products--polyoxygenated cyclohexenes exhibited potent anti-tumor activity, such as zeylenone, which is a natural product isolated from Uvaria grandiflora Roxb. This article will attempt to establish a gram-scale synthesis method of (+)-zeylenone and explain the structure-activity relationship of this kind of compound. Total synthesis of (+)-zeylenone was completed in 13 steps with quinic acid as the starting material in 9.8% overall yield. The highlight of the route was the control of the three carbon's chirality by single step dihydroxylation. In addition, different kinds of derivatives were designed and synthesized. Cell Counting Kit-8 (CCK8) assay was used for evaluating antitumor activity against three human cancer cell lines. The structure--activity relationship suggested that compounds with both absolute configurations exhibited tumor-suppressive effects. Moreover, hydroxyls at the C-1/C-2 position were crucial to the activity, and the esterification of large groups at C-1 hydroxyl eliminated the activity. Hydroxyl at the C-3 position was also important as proper ester substituent could increase the potency.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Cyclohexanes/pharmacology , Dioxanes/pharmacology , Uvaria/chemistry , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Proliferation/drug effects , Cell Survival/drug effects , Cyclohexanes/chemistry , Cyclohexanes/isolation & purification , Dioxanes/chemistry , Dioxanes/isolation & purification , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Mice , Molecular Structure , Stereoisomerism , Structure-Activity Relationship , Tumor Cells, Cultured
17.
J Hazard Mater ; 415: 125692, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34088187

ABSTRACT

Mercury (Hg0) pollution poses a huge threat to human health and the environment due to its high toxicity, long persistence and bioaccumulation in the environment. Most of the traditional Hg0 adsorbents have a low reaction rate, high operating cost, especially poor resistance to SO2, which limited their practical application. In this work, nanosheet g-C3N4 was used as the support and modified by CuS to capture flue gas mercury. Take advantage of the large specific surface area of g-C3N4 to increase the BET of the composite and decrease the use of CuS. The effects of CuS loading, reaction temperature, and common components in the coal-fired flue gas on the mercury removal performance were studied respectively. The experimental outcomes showed that the 10CuS/g-C3N4 (10CuS/CN) reaches as high as almost 100% Hg0 removal efficiency under the temperature of 40-120 â„ƒ. Meanwhile the common components like SO2, NO, HCl and H2O have no obvious inhibition effects on Hg0 removal efficiency of the 10CuS/CN adsorbent. Sx2- and Cu2+ as the primary bonding sites shows a synergy effect on Hg0 removal. 10CuS/CN is a promising material for Hg0 removal under various flue gas conditions, which is expected to be a substitute for traditional adsorbents.

18.
Sci Total Environ ; 762: 143176, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33158526

ABSTRACT

BACKGROUND: Fasting blood glucose may capture the adverse effects of air pollution on pregnant women better than the incidence of gestational diabetes mellitus (GDM), but evidence on the association between air pollution and maternal glucose concentrations is limited. OBJECTIVE: To investigate the associations between air pollutants, GDM and fasting blood glucose during pregnancy. METHODS: We recruited 2326 pregnant women from two birth cohorts located in Guangzhou and Heshan, the Pearl River Delta region (PRD), China. PM10, PM2.5 and black carbon (BC) exposure concentrations in the first and second trimesters of pregnancy were collected at fixed-site monitoring stations for each cohort. Multiple logistic regressions were employed to estimate the associations between particle pollution and GDM. Mixed-effects models were used to evaluate the associations of air pollutants with blood glucose levels. Restricted cubic spline functions were fitted to visualize the concentration-response relationships. Distributed lag non-linear models were used to estimate week-specific lag effects of particle pollution exposure on GDM and blood glucose. Unconstrained distributed lag models with lags of 0-3 weeks were used to examine potential cumulative effects. RESULTS: We observed positive and significant associations of PM10, PM2.5 and BC exposure with fasting glucose, particularly in the second trimester. PM10, PM2.5 and BC were strongly correlated and displayed similar cumulative (lag 0-3 weeks) associations with fasting blood glucose. Exposure to particle pollution was not associated with 1-h or 2-h blood glucose. Models estimating the association between air pollutants and GDM were consistent with statistical insignificance. CONCLUSIONS: Based on the results of the present study, exposure to air pollution during pregnancy exerts cumulative, adverse effects on fasting glucose levels. This study provides preliminary support for the use of blood glucose levels to explore the potential health impact of air pollution on pregnant women.


Subject(s)
Air Pollutants , Air Pollution , Diabetes, Gestational , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Asian People , Blood Glucose , China/epidemiology , Diabetes, Gestational/epidemiology , Fasting , Female , Humans , Maternal Exposure/adverse effects , Particulate Matter/adverse effects , Particulate Matter/analysis , Pregnancy , Pregnant Women
19.
Liver Int ; 41(1): 128-132, 2021 01.
Article in English | MEDLINE | ID: mdl-33012093

ABSTRACT

BACKGROUND AND AIMS: Congenital hepatic fibrosis (CHF) is a rare disease associated with polycystic kidney gene mutation and is characterized by liver fibrosis and portal hypertension. The pathology of CHF has common characteristics with hepatitis B cirrhosis. Currently, little is known about the clinical course of CHF during pregnancy or its effect on maternal and fetal outcomes. METHODS: Whole exome sequencing (WES), and laboratory and histopathological findings of the patient were documented. RESULTS: We report the case of a 30-year-old Chinese woman who had been diagnosed with hepatitis B cirrhosis 17 years before and whose diagnosis was revised to CHF based on confirmation by liver biopsy and WES. She conceived naturally and delivered a healthy live infant. CONCLUSIONS: The diagnostic methods for CHF are liver biopsy and WES. In pregnant patients with CHF, prenatal monitoring is mainly performed to monitor liver function, platelet and clotting function, portal hypertension and degree of esophageal and gastric varices. Precise guidelines for screening and management of patients with CHF need to be better defined.


Subject(s)
Esophageal and Gastric Varices , Hypertension, Portal , Adult , Esophageal and Gastric Varices/etiology , Female , Genetic Diseases, Inborn , Humans , Hypertension, Portal/etiology , Infant , Infant, Newborn , Liver Cirrhosis , Pregnancy , Pregnant Women
20.
Am J Ind Med ; 63(12): 1085-1094, 2020 12.
Article in English | MEDLINE | ID: mdl-32969041

ABSTRACT

BACKGROUND: We aimed to provide a quantitative summary of evidence for a relationship between prenatal lead (Pb) exposure and birth weight. METHODS: PubMed and Web of Science databases were searched for eligible epidemiological studies. We transformed findings in eligible studies with different effect-size metrics to standardized regression coefficients, and used fixed-effects or random-effects models to assess the pooled effects of prenatal Pb exposure on birth weight. RESULTS: There was a significant negative association between prenatal Pb exposure and birth weight. Birth weight reduction was associated with elevated lead levels in maternal blood (ß = -0.094; 95% confidence interval [CI]: -0.157 to -0.030) and cord blood (ß = -0.120; 95% CI: -0.239 to -0.001). CONCLUSIONS: This meta-analysis is the first to provide a quantitative assessment of Pb exposure during pregnancy and an increased risk of lower birth weight.


Subject(s)
Birth Weight/drug effects , Lead/blood , Maternal Exposure/statistics & numerical data , Pregnancy Trimesters/blood , Adult , Female , Humans , Infant, Newborn , Maternal Exposure/adverse effects , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...