Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioconjug Chem ; 34(12): 2194-2204, 2023 12 20.
Article in English | MEDLINE | ID: mdl-37748043

ABSTRACT

α6ß4* nicotinic acetylcholine receptor (nAChR) (* represents the possible presence of additional subunits) is mainly distributed in the central and peripheral nervous system and is associated with neurological diseases, such as neuropathic pain; however, the ability to explore its function and distribution is limited due to the lack of pharmacological tools. As one of the analogs of α-conotoxin (α-CTx) LvIC from Conus lividus, [D1G, Δ14Q]LvIC (Lv) selectively and potently blocks α6/α3ß4 nAChR (α6/α3 represents a chimera). Here, we synthesized three fluorescent analogs of Lv by connecting fluorescent molecules 6-carboxytetramethylrhodamine succinimidyl ester (6-TAMRA-SE, R), Cy3 NHS ester (Cy3, C) and BODIPY-FL NHS ester (BDP, B) to the N-terminus of the peptide and obtained Lv-R, Lv-C, and Lv-B, respectively. The potency and selectivity of three fluorescent peptides were evaluated using two-electrode voltage-clamp recording on nAChR subtypes expressed in Xenopus laevis oocytes, and the potency and selectivity of Lv-B were almost maintained with the half-maximal inhibition (IC50) of 64 nM. Then, we explored the stability of Lv-B in artificial cerebrospinal fluid and stained rat brain slices with Lv-B. The results indicated that the stability of Lv-B was slightly improved compared to that of native Lv. Additionally, we detected the distribution of the α6ß4* nAChR subtype in the cerebral cortex using green fluorescently labeled peptide and fluorescence microscopy. Our findings not only provide a visualized pharmacological tool for exploring the distribution of the α6ß4* nAChR subtype in various situ tissues and organs but also extend the application of α-CTx [D1G, Δ14Q]LvIC to demonstrate the involvement of α6ß4 nAChR function in pathophysiology and pharmacology.


Subject(s)
Conotoxins , Conus Snail , Receptors, Nicotinic , Rats , Animals , Receptors, Nicotinic/chemistry , Conotoxins/chemistry , Conotoxins/pharmacology , Conus Snail/chemistry , Peptides/chemistry , Esters
2.
Biomolecules ; 13(6)2023 06 06.
Article in English | MEDLINE | ID: mdl-37371530

ABSTRACT

Metformin is a traditional antidiabetic drug that also shows potential antitumor effects in cervical cancer. However, some of its apoptosis-related mechanisms are still unclear. In this study, flow cytometry, western blotting, and RNA sequencing (RNA-seq) were used to evaluate the molecular mechanisms of metformin in HeLa cells. The results showed that metformin inhibited cell viability and promoted apoptosis, the protein expression level of Caspase-3 (CASP3) was increased and that of BCL-2 was decreased in HeLa cells treated with metformin. The RNA-seq results indicated a total of 239 differentially expressed genes between the metformin and control check (CK) groups, with 136 genes upregulated and 103 genes downregulated, and 14 of them were found to be associated with apoptosis signaling pathways. The DDIT3 and HRK genes were robustly upregulated in HeLa cells by the endoplasmic reticulum (ER) stress and the mitochondrial pathway of apoptosis. Metformin also affects the expression of PPP2R5C, PPP2R5A, and RRAGA, which participate in biological processes such as PI3K-AKT, mTOR, and AMPK signaling pathways. Metformin mediates the expression of related genes to induce apoptosis.


Subject(s)
Metformin , Humans , HeLa Cells , Metformin/pharmacology , Metformin/therapeutic use , Cell Line, Tumor , Phosphatidylinositol 3-Kinases/metabolism , Cell Proliferation , Apoptosis
3.
Nanoscale ; 13(20): 9270-9279, 2021 May 27.
Article in English | MEDLINE | ID: mdl-33982739

ABSTRACT

Herein, we reported a label-free and reliable photoelectrochemical (PEC) platform for highly selective monitoring of norepinephrine (NE) based on metallic Bi nanoparticles anchored on hollow porous ZnSnO3 microspheres (3D Bi/ZnSnO3) via a simple solvothermal strategy. The designed 3D Bi/ZnSnO3 Schottky junction exhibited a unique photoanodic response toward NE among other catechol derivatives, such as epinephrine (EP) and dopamine (DA), and effectively shielded the interference from thirteen coexisting biomolecules like uric acid (UA) and ascorbic acid (AA). High selectivity and excellent sensitivity could be correlated to the unique chelating coordination interaction between NE and Zn2+ at surface sites as well as the efficient carrier separation of Bi/ZnSnO3, thereby developing a novel "signal-on" label-free and selective strategy for NE detection. The proposed Bi/ZnSnO3-based PEC sensor achieved remarkable NE biosensing with a low detection limit of 0.68 nmol L-1 and a wide response ranging from 0.002 to 350.0 µmol L-1. The applicability of this biosensor was realized for the selective analysis of NE in human serum, human urine and injection samples, laying the foundation for the label-free PEC monitoring of NE in biological fluids.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Dopamine , Humans , Limit of Detection , Microspheres , Norepinephrine
4.
Article in English | MEDLINE | ID: mdl-28708078

ABSTRACT

Soils play an important role in sequestrating atmospheric CO2. Coastal tidal flats have been intensively reclaimed for food security and living spaces worldwide. We aimed to identify the changes of soil organic carbon (SOC) and total nitrogen (TN) following coastal reclamation and their spatial variation in the coastal area of mid-Eastern China to provide information for coastal cropland management. We measured SOC and TN of 463 soil samples in the coastal plain of mid-Eastern China. The results showed that SOC and TN increased highly from the uncultivated coastal tidal flat (2.49 g·kg-1 and 0.21 g·kg-1, respectively) to the cropland (10.73 g·kg-1 and 1.3 g·kg-1, respectively). After long-term cultivation, SOC and TN in the old farmland (12.98 g·kg-1 and 1.49 g·kg-1, respectively) were greater than those in the young farmland (5.76 g·kg-1 and 0.86 g·kg-1, respectively). The density of SOC in the uncultivated coastal tidal flat, young farmland, and old farmland were 0.68 kg·C·m-2, 1.52 kg·C·m-2, and 3.31 kg·C·m-2, respectively. The density of TN in the uncultivated coastal tidal flat, young farmland and old farmland were 0.05 kg·N·m-2, 0.23 kg·N·m-2, and 0.38 kg·N·m-2, respectively. The C/N (11.17) in the uncultivated coastal tidal flat was highest comparing to that in the young and old farmland due to lower nitrogen. The C/N increased from 6.78 to 8.71 following cultivation. Reclaimed coastal tidal flats had high carbon and nitrogen sequestration potential that not only mitigated the threat of global warming, but also improved soil fertility for crop production. Coastal management of cropland should consider the spatial distribution of SOC and TN to improve ecosystem services of coastal soils.


Subject(s)
Carbon Sequestration , Carbon/analysis , Nitrogen/analysis , Soil/chemistry , China , Conservation of Natural Resources
SELECTION OF CITATIONS
SEARCH DETAIL
...