Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
ACS Nano ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965054

ABSTRACT

Polyanionic cathodes have attracted extensive research interest for Na-ion batteries (NIBs) due to their moderate energy density and desirable cycling stability. However, these compounds suffer from visible capacity fading and significant voltage decay upon the rapid sodium storage process, even if modified through nanoengineering or carbon-coating routes, leading to limited applications in NIBs. Herein, the Na3(VOPO4)2F cathode material with dominantly exposed {001} active facets is demonstrated by a topochemical synthesis route. Owing to the rational geometrical structure design and thereby directly shortening Na diffusion distance, the electrode delivers a reversible capacity of ∼129 mA h g-1 even at a high rate of 10 C, which is very close to the theoretical capacity of 132 mA h g-1, achieving a high energy density of ∼452 W h kg-1 coupled with a high-power density of 4660 W kg-1. When further served as a cathode for nonaqueous, aqueous-based, and solid-state full NIBs, respectively, our designed Na3(VOPO4)2F always enables superior electrochemical performance due to favorable kinetics.

2.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(2): 267-274, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38686725

ABSTRACT

As the global prevalence of obesity and the elderly population continues to increase,the incidence of sarcopenic obesity is also on the rise and becoming a global public health concern.Sarcopenic obesity not only increases the incidence of cancer,but is also associated with poor clinical outcomes in various cancers,such as surgical complications,increased risk of death,and possibly even an impact on chemotherapy as well.Therefore,sarcopenic obesity is emerging as an important indicator of prognosis in cancer patients.However,there are limited relevant studies on the association between sarcopenic obesity and cancer in China.This article reviews the definition and diagnosis of sarcopenic obesity,the clinical correlation between sarcopenic obesity and cancer,and the potential mechanisms,with a view to providing a reference for future clinical practice in China.


Subject(s)
Neoplasms , Obesity , Sarcopenia , Humans , Neoplasms/complications , Obesity/complications , Sarcopenia/etiology , Sarcopenia/complications , China/epidemiology , Prognosis
3.
J Am Chem Soc ; 146(14): 9819-9827, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38546207

ABSTRACT

Iron-based phosphate cathode of Na4Fe3(PO4)2(P2O7) has been regarded as a low-cost and structurally stable cathode material for Na-ion batteries (NIBs). However, their practical application is greatly hindered by the insufficient electrochemical performance and limited energy density. Here, we report a new iron-based phosphate cathode of Na4.5Fe3.5(PO4)2.5(P2O7) with the intergrown heterostructure of the maricite-type NaFePO4 and orthorhombic Na4Fe3(PO4)2(P2O7) phases at a mole ratio of 0.5:1. Benefited from the increased composition ratio and the spontaneous activation of the maricite-type NaFePO4 phase, the as-prepared Na4.5Fe3.5(PO4)2.5(P2O7) composites deliver a reversible capacity over 130 mA h g-1 and energy density close to 400 W h kg-1, which is far beyond that of the single-phase Na4Fe3(PO4)2(P2O7) cathode (∼120 mA h g-1 and ∼350 W h kg-1). Moreover, the kg-level products from the scale-up synthesis demonstrate a stable cycling performance over 2000 times at 3 C in pouch cells. We believe that our findings could show the way forward the practical application of the iron-based phosphate cathodes for NIBs.

4.
ACS Cent Sci ; 9(9): 1721-1736, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37780368

ABSTRACT

Na-ion batteries (NIBs) as a supplement to Li-ion batteries deliver huge application potential in the field of grid-scale energy storage. At present, it is a particularly imperative to advance commercialization of the NIBs after ten years of intensive research. Among the exploited cathodes for NIBs, polyanionic compounds have great commercial prospects due to their favorable ion diffusion channels, high safety, and superior structure stability determined by their unique structure framework; however, there is still a long way to go before large-scale industrialization can be realized. This outlook summarizes the recent progress of polyanion-type cathodes for NIBs and includes V-based, Fe-based, and Mn-based polyanionic compounds toward high energy density and long cycle lifespan. The remaining challenges and guidelines/suggestions for the design of the practically available polyanionic cathode materials with desirable energy density and cycling performance are presented. We hope that this outlook can provide some insights into the development of polyanionic cathodes for practical NIBs toward commercialization.

5.
Sci Rep ; 13(1): 387, 2023 01 08.
Article in English | MEDLINE | ID: mdl-36617577

ABSTRACT

The purpose of this study was to investigate the association between time restricted feeding (TRF) and different areas of cognitive function in the elderly in Chinese communities. This study consisted of 1353 community-dwelling Chinese older adults aged 60 years and older in Chongming area, Shanghai (563 males; the mean age, 73.38 ± 6.16 years). Mild cognitive impairment (MCI) and six different cognitive domains was assessed by the Chinese-version of Mini Mental State Examination (MMSE). Recording the eating time of each meal through oral inquiry to calculate the time window between the first meal and the last meal of the average day. Participants with an eating time window duration of more than 10 h were then identified, as well as those with eating time restricted to less than 10 h (TRF). Our study found that TRF may be associated with a higher incidence rate of cognitive impairment. TRF only limited the eating time window and did not change the frequency of participants' dietary intake. We used a linear regression model to study the association of TRF with cognitive function. After adjusting for confounding variables, the results showed that TRF was related to MMSE score (P < 0.001), "Orientation to place" (P < 0.001) and "Attention/calculation" (P < 0.001) functions. Among Chinese older community-dwellers, TRF was associated with a higher prevalence of CI and negatively correlated with the "Orientation to place" and "attention/calculation" functions.


Subject(s)
Cognitive Dysfunction , Intermittent Fasting , Aged , Male , Humans , Middle Aged , East Asian People , China/epidemiology , Cognition
6.
Angew Chem Int Ed Engl ; 62(13): e202217761, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36719001

ABSTRACT

The rhombohedral sodium manganese hexacyanoferrate (MnHCF) only containing cheap Fe and Mn metals was regarded as a scalable, low-cost, and high-energy cathode material for Na-ion batteries. However, the unexpected Jahn-teller effect and significant phase transformation would cause Mn dissolution and anisotropic volume change, thus leading to capacity loss and structural instability. Here we report a simple room-temperature route to construct a magical Cox B skin on the surface of MnHCF. Benefited from the complete coverage and the buffer effect of Cox B layer, the modified MnHCF cathode exhibits suppressed Mn dissolution and reduced intergranular cracks inside particles, thereby demonstrating thousands-cycle level cycling lifespan. By comparing two key parameters in the real energy world, i.e., cost per kilowatt-hours and cost per cycle-life, our developed Cox B coated MnHCF cathode demonstrates more competitive application potential than the benchmarking LiFePO4 for Li-ion batteries.

7.
Front Aging Neurosci ; 14: 900523, 2022.
Article in English | MEDLINE | ID: mdl-36118698

ABSTRACT

Objective: This study explores the gender differences in the prevalence of mild cognitive impairment (MCI) and the correlation between multiple influencing factors. Materials and methods: The sample was comprised of 1325 relatively healthy participants aged ≥ 60 years in a Shanghai community-dwelling (557 males and 768 females). Cognitive function was assessed by Mini-Mental State Examination (MMSE). The Instrumental Activities of Daily Living (IADL) scale was used to assess the activities of daily living. Results: The overall prevalence of MCI was 15.2%, with 10.2% in men and 18.9% in women. In older male subjects, those with higher the Geriatric Depression Scale (GDS) scores [odds ratio (OR) = 1.07, 95% confidence interval (CI) = 1.01-1.14] and hypertension (OR = 2.33, 95% CI = 1.15-4.73) had a higher risk of MCI. female subjects who were illiterate (OR = 2.95, 95% CI = 1.82-4.78), had a farming background (OR = 1.69, 95% CI = 1.05-2.72), and a history of stroke (OR = 1.96, 95% CI = 1.07-3.59) had a higher risk of MCI, but this was not true for males. However, Male subjects who never smoked were less likely to have MCI (OR = 0.22, 95% CI = 0.09-0.54). Additionally, the prevalence of MCI was lower in older women with high grip strength (OR = 0.96, 95% CI = 0.92-0.99) and hyperlipidemia (OR = 0.45, 95% CI = 0.22-0.96). Conclusion: The prevalence of MCI was higher in the population of elderly women compared to men. Moreover, it was found that members with MCI tended to having higher GDS scores, smoking, and hypertension; whereas a history of farming, illiteracy, stroke, grip strength, and hyperlipidemia were correlated with MCI in women.

8.
ACS Appl Mater Interfaces ; 14(21): 24255-24264, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35603942

ABSTRACT

The preferentially selective extraction of Li+ from spent layered transition metal oxide (LiMO2, M = Ni, Co, Mn, etc.) cathodes has attracted extensive interest based on economic and recycling efficiency requirements. Presently, the efficient recycling of spent LiMO2 is still challenging due to the element loss in multistep processes. Here, we developed a facile strategy to selectively extract Li+ from LiMO2 scraps with stoichiometric H2SO4. The proton exchange reaction could be driven using temperature, accompanied by the generation of soluble Li2SO4 and MOOH precipitates. The extraction mechanism includes a two-stage evolution, including dissolution and ion exchange. As a result, the extraction rate of Li+ is over 98.5% and that of M ions is less than 0.1% for S-NCM. For S-LCO, the selective extraction result is even better. Finally, Li2CO3 products with a purity of 99.68% can be prepared from the Li+-rich leachate, demonstrating lithium recovery efficiencies as high as 95 and 96.3% from NCM scraps and S-LCO scraps, respectively. In the available cases, this work also represents the highest recycling efficiency of lithium, which can be attributed to the high leaching rate and selectivity of Li+, and even demonstrates the lowest reagent cost. The regenerated LiNi0.5Co0.24Mn0.26O2 and Na1.01Li0.001Ni0.38Co0.18Mn0.44O2 cathodes also deliver a decent electrochemical performance for Li-ion batteries (LIBs) and Na-ion batteries (NIBs), respectively. Our current work offers a facile, closed-loop, and scalable strategy for recycling spent LIB cathodes based on the preferentially selective extraction of Li+, which is superior to the other leaching technology in terms of its cost and recycling yield.

9.
ACS Appl Mater Interfaces ; 13(46): 54997-55006, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34756035

ABSTRACT

Nickel-rich layered oxides have been regarded as a potential cathode material for high-energy-density lithium-ion batteries because of the high specific capacity and low cost. However, the rapid capacity fading due to interfacial side reactions and bulk structural degradation seriously encumbers its commercialization. Herein, a highly stable hybrid surface architecture, which integrates an outer coating layer of TiO2&Li2TiO3 and a surficial titanium doping by incorporated Ti2O3, is carefully designed to enhance the structural stability and eliminate lithium impurity. Meanwhile, the surficial titanium doping induces a nanoscale cation-mixing layer, which suppresses transition-metal-ion migration and ameliorates the reversibility of the H2 → H3 phase transition. Also, the Li2TiO3 coating layer with three-dimensional channels promotes ion transportation. Moreover, the electrochemically stable TiO2 coating layer restrains side reactions and reinforces interfacial stability. With the collaboration of titanium doping and TiO2&Li2TiO3 hybrid coating, the sample with 1 mol % modified achieves a capacity retention of 93.02% after 100 cycles with a voltage decay of only 0.03 V and up to 84.62% at a high voltage of 3.0-4.5 V. Furthermore, the ordered occupation of Ni ions in the Li layer boosts the thermal stability by procrastinating the layered-to-rock salt phase transition. This work provides a straightforward and economical modification strategy for boosting the structural and thermal stability of nickel-rich cathode materials.

10.
ACS Appl Mater Interfaces ; 13(28): 33015-33023, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34240842

ABSTRACT

Na-ion batteries (NIBs) have been considered as potential candidates for large-scale energy storage, where O3-type Na-based layered oxide cathodes have attracted great attention due to their high capacity and low cost. However, O3-NaxTMO2 materials still suffer from insufficient air stability, which could lead to deteriorative electrochemical properties and thus hinder their practical application. In this work, a series of Al-doped O3-NaFe(1/3-x)Ni1/3Mn1/3AlxO2 cathodes prepared by a co-precipitation method were investigated to enhance their electrochemical performance and air stability through stabilizing their structural and interface chemical properties. The Al-doped O3-NaFe(1/3-0.01)Ni1/3Mn1/3Al0.01O2 (NFNMA0.01) cathode delivers a comparable capacity of 138 mAh g-1 and keeps a capacity retention of 85.88% after 50 cycles at 0.2 C, while the undoped O3-NaFe1/3Ni1/3Mn1/3O2 (NFNM) can only keep a capacity retention of 71.02%, although with an initial capacity of 141 mAh g-1 at 0.2 C. For the air stability, the capacity decay rates are 58.87 and 5.07% for the undoped NFNM and Al-doped NFNMA0.01 after the air exposure for 30 days, respectively. The greatly decaying electrochemical performance could be due to the formation of carbonates during air exposure, which can be efficiently suppressed by Al doping. The doped Al3+ has been confirmed to be inserted into the NFNM crystal lattice, inducing the reduced values of lattice parameters a and c due to the smaller ionic radius of Al3+ (53.5 pm) vs Fe3+ (55.0 pm). This study demonstrates that Al doping plays an important role in the air stability and cycling stability for layered cathode materials, which offers an efficient strategy to optimize the material design for their practical application in NIBs.

11.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 29(1): 243-247, 2021 Feb.
Article in Chinese | MEDLINE | ID: mdl-33554828

ABSTRACT

OBJECTIVE: To investigate the irregular antibody positive rate and antibody specificity in children with thalassemia received long-term blood transfusion in Hainan area and analyze the causes of antibody screening positive. METHODS: Micro-column gel method was used to screen the irregular antibody in 49 children who received transfusion treatment in our hospital, and the antibody specificity of the positive samples was evaluated. RESULTS: Fourteen of 49 cases showed positive for screening. Among them, 11 cases showed Rh blood group antibody after detecting antibody specificity, 1 case showed the coexistence of irregular antibody and autoantibody. One case for anti-JKa and 1 case for anti-JKb. The positive rate of antibody screening was 16.1% (5/31) in males and 50.0% (9/18) in females. The positive rate of antibody screening was higher in females than that in males. The positive rate of antibody screening in Han and Li nationality was 18.4% (7/38) and 63.6% (7/11), respectively. The positive rate of antibody screening in Li nationality was higher than that in Han nationality. After starting blood transfusion treatment, there were 3 cases (15.8%) of antibody screening positive at birth to 6 months old, Three cases (20.0%) of antibody screening positive at 6 months to 1 year old and 8 cases (53.3%) of antibody screening positive at over 1 year old. Three cases with α-thalassemia were negative after screening. Four cases (14.8%) with ß-thalassemia were positive after screening. Nine cases (60.0%) with αß thalassemia were positive after screening, 1 case (25.0%) with undefined type of thalassemia was positive after screening. The positive rate of antibody screening after blood transfusion was highest in children with αß mixed type of thalassemia. Above-mentimed differences were statistically significant (P<0.05). But there was no significant difference between the positive rate of screening by ABO blood group (P>0.05). CONCLUSION: Most of the antibodies produced after long-term blood transfusion in the children with thalassemia belong to Rh blood group antibodies; the children with mixed thalassemia are more likely to produce antibodies; the antibody screening positive rate of Li nationality is higher than that of Han nationality, which may be caused by the genetic difference of blood type between Li nationality and Han nationality.


Subject(s)
Blood Transfusion , beta-Thalassemia , ABO Blood-Group System , Blood Grouping and Crossmatching , Child , Female , Humans , Infant , Male , Rh-Hr Blood-Group System
12.
ACS Appl Mater Interfaces ; 13(8): 10064-10070, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33591734

ABSTRACT

A binder is an important component in lithium-ion batteries and plays a significant role in maintaining the properties of active substances. Most studies in the field of binders have only focussed on physical properties such as bonding performance. Here, a polyacrylic acid-modified binder was designed and adapted to Li[Ni0.8Co0.1Mn0.1]O2, which enhanced the electrochemical stability of Li[Ni0.8Co0.1Mn0.1]O2 from 30.2 to 66.6% (300 cycles at 1 C). We for the first time discovered that this was caused by a chemical reaction between polyacrylic acid and the residual lithium on the surface during the cycling, which formed a lithium propionic acid coating layer and maintained the stability of the layered structure.

13.
J Colloid Interface Sci ; 585: 287-301, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33296731

ABSTRACT

In this paper, the simple and low-cost water extraction way was used to acquisition Betel leaves extracts (BLE). The water as the extraction solvent has the characteristics of low price, environmentally friendly, and good solubility for other extraction solvents. BLE was researched as an environmental-friendly inhibitor via various experimental methods and theoretical calculations. Electrochemical experiments manifest that BLE can restrain reactions of the cathode and anode of Q235 steel. The BLE concentration was 400 mg/L, the anti-corrosion efficiency was close to 94%. The experimental data show that BLE can show high-quality anti-corrosion nature for Q235 steel immersing in 1 M hydrochloric acid (HCl) environment at a certain temperature range. The morphology maps of scanning electron microscope (SEM) and atomic force microscopy (AFM) strongly proves the data of electrochemical experiments. In addition, the BLE adsorption at the Q235 steel surface belongs to the Langmuir mono-layer adsorption. Quantum chemical calculations (QCC) and molecular dynamics simulations (MDS) effectually manifest that BLE can show decent anti corrosion character.


Subject(s)
Steel , Water , Adsorption , Corrosion , Plant Leaves
14.
ACS Appl Mater Interfaces ; 12(7): 8146-8156, 2020 Feb 19.
Article in English | MEDLINE | ID: mdl-31916744

ABSTRACT

Injection of phase transition from a layered to rock-salt phase into the bulk lattice and side reactions on the interfacial usually causes structure degradation, quick capacity/voltage decay, and even thermal instability. Here, a self-formed interfacial protective layer coupled with lattice tuning was constructed for Ni-rich cathodes by simultaneous incorporation of Zr and Al in a one-step calcination. The migration energy between Zr and Al from the surface into the bulk lattice induces dual modifications from the surface into the bulk lattice, which effectively decrease the formation of cation mixing, the degree of anisotropic lattice change, and the generation of microcracks. With the stabilization role provided by the doped Zr-Al ions and protective function endowed by the surface layer, the modified cathode material exhibits significantly enhanced capacity and voltage retention. Specifically, the capacity retention for the modified cathode material reaches 99% after 100 cycles at 1 C and 25 °C in a voltage range of 3.0-4.3 V, which outperformed that for the pristine cathode (70%). The declination values of the average voltage for the modified cathode are only 0.025 and 0.097 V after 100 cycles at 1 C in voltage ranges of 3.0-4.3 and 2.8-4.5 V, respectively, which are much lower than those for the pristine cathode (0.230 and 0.405 V). The synchronous accomplishment of modification from the surface into the bulk lattice for Ni-rich materials with multiple elements in a one-step calcination process would provide some referenced value for the preparation of other cathode materials.

15.
Angew Chem Int Ed Engl ; 59(4): 1491-1495, 2020 Jan 20.
Article in English | MEDLINE | ID: mdl-31677318

ABSTRACT

Demands for large-scale energy storage systems have driven the development of layered transition-metal oxide cathodes for room-temperature rechargeable sodium ion batteries (SIBs). Now, an abnormal layered-tunnel heterostructure Na0.44 Co0.1 Mn0.9 O2 cathode material induced by chemical element substitution is reported. By virtue of beneficial synergistic effects, this layered-tunnel electrode shows outstanding electrochemical performance in sodium half-cell system and excellent compatibility with hard carbon anode in sodium full-cell system. The underlying formation process, charge compensation mechanism, phase transition, and sodium-ion storage electrochemistry are clearly articulated and confirmed through combined analyses of in situ high-energy X-ray diffraction and ex situ X-ray absorption spectroscopy as well as operando X-ray diffraction. This crystal structure engineering regulation strategy offers a future outlook into advanced cathode materials for SIBs.

16.
Inorg Chem ; 58(10): 6579-6583, 2019 May 20.
Article in English | MEDLINE | ID: mdl-31050285

ABSTRACT

Transition-metal phosphides have been increasingly investigated because of their high theoretical specific capacity and low potential for sodium storage. Herein, we describe the development of Ni2P nanosheets on carbon cloth (Ni2P Ns/CC), which behaves as a flexible 3D anode for sodium-ion batteries. Such a Ni2P Ns/CC delivers a high capacity of 399 mA h g-1 at 0.2 A g-1. At 2 A g-1, it still delivers 72 mA h g-1 even after 1000 cycles. The impressive performance is attributed to such a self-supported structure. Moreover, a possible conversion reaction mechanism is also carefully revealed.

17.
ACS Appl Mater Interfaces ; 11(18): 16629-16638, 2019 May 08.
Article in English | MEDLINE | ID: mdl-31002220

ABSTRACT

Capacity fading induced by unstable surface chemical properties and intrinsic structural degradation is a critical challenge for the commercial utilization of Ni-rich cathodes. Here, a highly stabilized Ni-rich cathode with enhanced rate capability and cycling life is constructed by coating the molybdenum compound on the surface of LiNi0.815Co0.15Al0.035O2 secondary particles. The infused Mo ions in the boundaries not only induce the Li2MoO4 layer in the outermost but also form an epitaxially grown outer surface region with a NiO-like phase and an enriched content of Mo6+ on the bulk phase. The Li2MoO4 layer is expected to reduce residential lithium species and promote the Li+ transfer kinetics. The transition NiO-like phase, as a pillaring layer, could maintain the integrity of the crystal structure. With the suppressed electrolyte-cathode interfacial side reactions, structure degradation, and intergranular cracking, the modified cathode with 1% Mo exhibits a superior discharge capacity of 140 mAh g-1 at 10 C, a superior cycling performance with a capacity retention of 95.7% at 5 C after 250 cycles, and a high thermal stability.

18.
RSC Adv ; 9(63): 36849-36857, 2019 Nov 11.
Article in English | MEDLINE | ID: mdl-35539034

ABSTRACT

Ni-rich layered transition metal oxides show great energy density but suffer poor thermal stability and inferior cycling performance, which limit their practical application. In this work, a minor content of Co and B were co-doped into the crystal of a Ni-rich cathode (LiNi0.8Co0.1Mn0.1O2) using cobalt acetate and boric acid as dopants. The results analyzed by XRD, TEM, XPS and SEM reveal that the modified sample shows a reduced energy barrier for Li+ insertion/extraction and alleviated Li+/Ni2+ cation mixing. With the doping of B and Co, corresponding enhanced cycle stability was achieved with a high capacity retention of 86.1% at 1.0C after 300 cycles in the range of 2.7 and 4.3 V at 25 °C, which obviously outperformed the pristine cathode (52.9%). When cycled after 300 cycles at 5C, the material exhibits significantly enhanced cycle stability with a capacity retention of 81.9%. This strategy for the enhancement of the electrochemical performance may provide some guiding significance for the practical application of high nickel content cathodes.

19.
J Colloid Interface Sci ; 538: 519-529, 2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30544069

ABSTRACT

Food flavors of 2-isobutylthiazole (ITT) and 1-(1,3-Thiazol-2-yl)ethanone (TEO) for the corrosion inhibition of X65 steel in H2SO4 were studied by electrochemical methods, atomic force microscopy (AFM), scanning electron microscopy (SEM) and theoretical calculations. Electrochemical experiments show that ITT and TEO can effectively inhibit the corrosion of cathode and anode of X65 steel, and they are mixed-type corrosion inhibitors. Surface topography analysis (SEM and AFM) also visually demonstrate that ITT and TEO form an effective barrier film on the X65 steel surface to isolate the corrosive medium. Theoretical calculations profoundly explain the inhibition mechanism of ITT and TEO at the molecular level. In addition, the adsorption behavior of ITT and TEO on the surface of X65 steel is consistent with Langmuir isotherm adsorption. The results of experimental and theoretical studies have shown that the inhibition effect of TEO is better than ITT for X65 in 0.5 M H2SO4.


Subject(s)
Quantum Theory , Steel/chemistry , Sulfuric Acids/chemistry , Thiazoles/chemistry , Adsorption , Electrochemical Techniques , Microscopy, Atomic Force , Molecular Structure , Surface Properties
20.
ACS Appl Mater Interfaces ; 10(33): 27821-27830, 2018 Aug 22.
Article in English | MEDLINE | ID: mdl-30063329

ABSTRACT

Nickel-rich layered oxides are regarded as very promising materials as cathodes for lithium-ion batteries because of their environmental benignancy, low cost, and high energy density. However, insufficient cycle performance and poor thermotic characteristics induced by structural degradation at high potentials and elevated temperatures pose challenging hurdles for nickel-rich cathodes. Here, a protective pillaring layer, in which partial Ni2+ ions occupy Li slabs induced by gradient Mn4+, is integrated into the primary particle of LiNi0.815Co0.15Al0.035O2 to stabilize the surface/interfacial structure. With the stable outer surface provided by the enriched Mn4+ gradient concentration and the pillar effect of the NiO-like phase, Mn-incorporated quaternary cathodes show enhanced structural stability and improved Li+ diffusion as well as lithium-storage properties. Compared with the severe capacity fade of a pure layered structure, the cathode with gradient Mn4+ exhibits more stable cycling behavior with a capacity retention of 80.0% after 500 cycles at 5.0 C.

SELECTION OF CITATIONS
SEARCH DETAIL
...