Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 816
Filter
1.
Food Funct ; 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39319490

ABSTRACT

Correction for 'Grifola frondosa polysaccharides ameliorate lipid metabolic disorders and gut microbiota dysbiosis in high-fat diet fed rats' by Lu Li et al., Food Funct., 2019, 10, 2560-2572, https://doi.org/10.1039/C9FO00075E.

2.
J Clin Oncol ; : JCO2301107, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39231383

ABSTRACT

PURPOSE: BT5528 is a Bicycle Toxin Conjugate, a novel class of chemically synthesized molecules, comprising a bicyclic peptide targeting EphA2 tumor antigen, linked to a cytotoxin (monomethyl auristatin E [MMAE]). EphA2 is overexpressed in many solid tumors and contributes to oncogenesis, tumor-associated angiogenesis, and metastasis. MATERIALS AND METHODS: The primary objectives were to investigate the safety and tolerability of BT5528 and to define the maximum-tolerated dose, if observed, and recommended phase II dose (RP2D)/expansion dose. Dose escalation exploring once every week or once every 2 weeks administration of BT5528 employed a 3 + 3 dose-escalation design for the first two dose levels, followed by a Bayesian logistic regression model. Secondary and exploratory end points included preliminary efficacy and the pharmacokinetics of BT5528 and MMAE. RESULTS: Forty-five patients were enrolled and received BT5528 doses between 2.2 mg/m2 once every week to 10.0 mg/m2 once every 2 weeks within the dose-escalation stage of the study. The most frequent BT5528-related adverse events (AEs) were nausea (44.4%), diarrhea (35.6%), and fatigue (33.3%), and the most common grade ≥3 BT5528-related AE was neutropenia/neutrophil count decrease (22.2%). Dose level 6.5 mg/m2 once every 2 weeks was selected as a RP2D. At 6.5 mg/m2 once every 2 weeks, the overall response rate was 6.7%, and the disease control rate was 20.0%. BT5528 and MMAE pharmacokinetics are generally dose proportional. BT5528 has a short half-life (0.4-0.7 hours), and the half-life of MMAE is longer (35-47 hours). CONCLUSION: BT5528 was well tolerated and demonstrated favorable and preliminary antitumor activity. We believe these data provide preliminary validation of a Bicycle Toxin Conjugate approach to EphA2 tumor antigen. The study is ongoing and is evaluating BT5528 as monotherapy at a RP2D of 6.5 mg/m2 once every 2 weeks.

3.
Free Radic Biol Med ; 224: 630-643, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39299527

ABSTRACT

Ectopic lipid accumulation induced lipotoxicity plays a crucial role in exacerbating the development of metabolic dysfunction-associated steatotic liver disease (MASLD), which affects over 30% of the worldwide population and 85% of the obese population. The growing demand for effective therapeutic agents highlights the need for high-efficacy lipotoxicity ameliorators and relevant therapeutic targets in the fight against MASLD. This study aimed to discover natural anti-lipotoxic and anti-MASLD candidates and elucidate the underlying mechanism and therapeutic targets. Utilizing palmitic acid (PA)-induced HepG-2 and primary mouse hepatocyte models, we identified linoleic acid (HN-002), a ligand of fatty acid binding protein 4 (FABP4), from the marine fungus Eutypella sp. F0219. HN-002 dose-dependently prevented lipid overload-induced hepatocyte damage and lipid accumulation, inhibited fatty acid esterification, and ameliorated oxidative stress. These beneficial effects were associated with improvements in mitochondrial adaptive oxidation. HN-002 treatment enhanced lipid transport into mitochondria and oxidation, inhibited mitochondrial depolarization, and reduced mitochondrial ROS (mtROS) level in PA-treated hepatocytes. Mechanistically, HN-002 treatment disrupted the interaction between KEAP1 and NRF2, leading to NRF2 deubiquitylation and nuclear translocation, which activated beneficial metabolic regulation. In vivo, HN-002 treatment (20 mg/kg/per 2 days, i. p.) for 25 days effectively reversed hepatic steatosis and liver injury in the fast/refeeding plus high-fat/high-cholesterol diet induced MASLD mice. These therapeutic effects were associated with enhanced mitochondrial adaptive oxidation and activation of NRF2 signaling in the liver. These data suggest that HN-002 would be an interesting candidate for MASLD by improving mitochondrial oxidation via the FABP4/KEAP1/NRF2 axis. The discovery offers new insights into developing novel anti- MASLD agents derived from marine sources.

4.
Medicine (Baltimore) ; 103(38): e39733, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39312339

ABSTRACT

The incidence of cervical cancer is increasing. Immunotherapies show better patient outcomes than monotherapies; however, the mainstay treatment for cervical cancer remains surgery and chemotherapy. Indoleamine 2,3-dioxygenase 1 (IDO1) acts on multiple tryptophan substrates, exhibiting antitumor, immunomodulatory, and antioxidant activities. Despite the association of elevated IDO1 expression with unfavorable outcomes in various cancers, its precise function in cervical cancer remains ambiguous. Here, we explored the prognostic significance of IDO1 in cervical carcinoma. Gene expression datasets were obtained from The Cancer Genome Atlas. Gene Expression Omnibus datasets were used for differential expression and functional correlation analyses. Using Human Protein Atlas alongside Tumor-Immune System Interaction Database, we assessed the association of IDO1 with survival rates. Given the link between cervical cancer prognosis and immune invasion, CIBERSORT was used to assess the connection between immune cells and IDO1, while the percentage of tumor-penetrating immune cells based on IDO1 expression in cervical cancer patients was analyzed using Tumor-Immune System Interaction Database. Incorporating a clinicopathological characteristic-based risk score model with IDO1 risk score, we devised a nomogram to predict cervical cancer patient survival. The effects of IDO1 in immune regulation and its prognostic significance were validated using data from patients with cervical cancer obtained from The Cancer Imaging Archive database. Compared with that in normal cervical tissues, IDO1 expression was significantly upregulated in cervical cancer tissues and significantly correlated with cervical cancer progression and prognosis. IDO1 expression showed a positive association with monocyte and macrophage abundance, while exhibiting a negative correlation with that of endothelial cells and eosinophils. Cox regression analyses highlighted IDO1 as the core immune gene implicated in cervical cancer. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed an association of IDO1 with the metabolic pathways of tryptophan, phenylalanine, and tyrosine. Univariate and multivariate analyses revealed that elevated IDO1 expression correlates markedly with cervical cancer outcomes, suggesting it as a promising therapeutic target. The Cancer Imaging Archive data analysis revealed that the impact of anti-PD1 and CTLA4 therapy is more pronounced in cervical cancer patients exhibiting elevated IDO1 expression. IDO1 is a potential target for immunotherapy for cervical cancer.


Subject(s)
Indoleamine-Pyrrole 2,3,-Dioxygenase , Uterine Cervical Neoplasms , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/mortality , Female , Prognosis , Middle Aged , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Nomograms
5.
Int J Biol Macromol ; 279(Pt 3): 135346, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39242010

ABSTRACT

This study was conducted to develop a W/O/W emulsion encapsulated Lactobacillus plantarum 23-1 (LP23-1) to significantly enhance the survival rate of LP23-1 under simulated digestion and storage conditions. The zein particles and pectin formed a complex through electrostatic interaction and hydrogen bonding. When the proportion of zein particles to pectin was 1:1, the emulsifying stability index (ESI) was 304.17 %. Additionally, when the proportion of the internal aqueous phase to the oil phase was 1:9, the polyglycerol polyricinoleate (PGPR) concentration was 5 %, the proportion of primary emulsion to the external aqueous phase was 5:5, the zein particles concentration was 4 %, and the proportion of zein particles to pectin was 1:1, the encapsulation rate was the highest at 96.27 %. Cryo-scanning electron microscopy and fluorescence microscopy confirmed the morphology of W/O/W emulsion and successful encapsulation of LP23-1. Furthermore, compared with free LP23-1, the W/O/W emulsion encapsulation significantly improved the survival rate of LP23-1 to 73.36 % after simulated gastrointestinal digestion and maintained a high survival rate of 78.42 % during the 35-day storage. The W/O/W emulsion was found to effectively improve the survival rate of LP23-1 during simulated digestion and storage, which has implications for the development of probiotic functional foods with elevated survival rates.

6.
BMC Public Health ; 24(1): 2431, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39243068

ABSTRACT

BACKGROUND: Atherogenic index of plasma (AIP) index is an important marker of insulin resistance and a significant risk factor for cardiovascular disease. Abdominal aortic calcification (AAC) is significantly associated with subclinical atherosclerotic disease. However, there are no studies that have examined the relationship between AIP index and AAC, so we investigated the potential association between them in the general population. METHODS: This was a cross-sectional study using data from the National Health and Nutrition Examination Survey (NHANES, 2013-2014). The association of AIP with AAC was estimated by multivariable regression analysis. RESULTS: After adjusting for confounders, the odds of extensive AAC doubled per unit increase in the AIP index (OR = 2.00, 95% CI: 1.05, 3.83; P = 0.035). The multivariable OR and 95% CI of the highest AIP index tertile compared with the lowest tertile was significantly different. (OR = 1.73, 95% CI: 1.05, 2.83; P = 0.031). The subgroup analyses indicated that the association was consistent irrespective of age, sex, hypertension, diabetes, smoking status, eGFR and hypercholesteremia. CONCLUSIONS: The AIP index was independently associated with the presence of extensive AAC in the study population. Further studies are required to confirm this relationship.


Subject(s)
Aorta, Abdominal , Atherosclerosis , Nutrition Surveys , Vascular Calcification , Humans , Cross-Sectional Studies , Male , Female , Middle Aged , Aorta, Abdominal/diagnostic imaging , Aorta, Abdominal/pathology , Vascular Calcification/epidemiology , Vascular Calcification/blood , Atherosclerosis/epidemiology , Atherosclerosis/blood , Adult , Risk Factors , Biomarkers/blood , Aortic Diseases/epidemiology , Aortic Diseases/blood , Aged
7.
Chem Commun (Camb) ; 60(76): 10556-10559, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39229780

ABSTRACT

This study explores the mechanism of enhanced electrochemiluminescence (ECL) due to the coupling effect in gold nanodimers (Au NDs) with precisely controlled interparticle distances via electrochemiluminescence microscopy (ECLM). Our research revealed that the enhancement in ECL was predominantly attributed to increased charge density and elevated electric fields resulting from overlapping electrochemical double layers. These findings offer new insights into the fundamental processes that govern nanostructure-mediated electrocatalysis, opening up exciting possibilities for future applications.

9.
Adv Sci (Weinh) ; : e2403574, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136049

ABSTRACT

Cytopathology, crucial in disease diagnosis, commonly uses microscopic slides to scrutinize cellular abnormalities. However, processing high volumes of samples often results in numerous negative diagnoses, consuming significant time and resources in healthcare. To address this challenge, a surface acoustic wave-enhanced multi-view acoustofluidic rotation cytometry (MARC) technique is developed for pre-cytopathological screening. MARC enhances cellular morphology analysis through comprehensive and multi-angle observations and amplifies subtle cell differences, particularly in the nuclear-to-cytoplasmic ratio, across various cell types and between cancerous and normal tissue cells. By prioritizing MARC-screened positive cases, this approach can potentially streamline traditional cytopathology, reducing the workload and resources spent on negative diagnoses. This significant advancement enhances overall diagnostic efficiency, offering a transformative vision for cytopathological screening.

10.
Chem Sci ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39139736

ABSTRACT

There exists an interplay between borane and a Lewis base in their adducts. However, studies on these adducts so far have mainly focused on the different reactions of B-H bonds with limited attention given to the influence of borane on the chemistry of the Lewis base, except for BF3 and BAr3. Herein, we have synthesized novel borane adducts with pyridine derivatives, Py·B3H7, in which the coordination of B3H7 efficiently achieved the intra-molecular charge transfer. The strong B-N bond in these adducts resulted in the formation of stable dearomatic intermediates of pyridine derivatives, confirmed by 1H and 11B NMR spectroscopy, from which different reactions have transpired to realize C(sp3)-H and C(sp2)-H functionalization under mild conditions. The B3H7 pyridine derivatives are stable and do not dissociate or decompose during the reaction process. The high stability of the B-N bond makes this method a good option for boron-containing drugs with potential for use in boron neutron capture therapy (BNCT).

11.
World Neurosurg ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39111659

ABSTRACT

OBJECTIVE: We aimed to explore the prognostic significance of preoperative magnetic resonance imaging (MRI) variables and novel inflammatory indicators in predicting neurological recovery post-cervical traumatic spinal cord injury (TSCI) in the study. METHODS: We enrolled a total of 244 patients diagnosed with acute cervical TSCI from 2 hospitals and evaluated the prognostic value of MRI variables (intramedullary hemorrhage, intramedullary lesion length [IMLL], maximum spinal cord compression, and maximum canal compromise [MCC]) and novel inflammatory indicators (neutrophil-to-lymphocyte ratio [NLR], platelet-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, and systemic immune-inflammatory index) in patients with acute cervical TSCI. RESULTS: Among the 244 patients, 140 (57.38%) exhibited improved AIS grade conversion at 1-year follow-up. The results revealed intramedullary hemorrhage, IMLL, MCC, neutrophils, and NLR were significantly different compared with follow-up AIS grade. Furthermore, IMLL, MCC, white blood cells, neutrophils, NLR, and lymphocyte-to-monocyte ratio correlated with the follow-up AIS grade by Spearman's correlation analysis. Multivariate analysis showed IMLL, intramedullary hemorrhage, NLR, and admission AIS grade emerged as independent predictors of AIS grade conversion. The receiver operating characteristic curve analysis showed that the novel model (combination of MRI variables, NLR, and admission AIS grade) produced a larger area under the curve compared with using only intramedullary hemorrhage, IMLL, NLR, or admission AIS grade individually. CONCLUSION: Intramedullary hemorrhage and IMLL and NLR are predictors of AIS grade conversion after cervical TSCI. Therefore, we suggest the combination of MRI variables and NLR for the prognostic prediction of AIS grade conversion in patients with cervical TSCI.

12.
Nutr J ; 23(1): 90, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39123223

ABSTRACT

BACKGROUND: Individuals with metabolic syndrome face elevated cardiovascular and mortality risks, and there is ongoing debate regarding the cardiovascular effects of niacin and its impact on the prognosis of metabolic syndrome. EXPOSURE: Levels of dietary niacin intake based on 24-hour dietary recall. METHODS: Kaplan-Meier survival curves were used to compare survival status among quartiles of dietary niacin intake. Weighted Cox proportional hazards models and restricted cubic splines were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for the risk of all-cause and CVD mortality associated with the exposure. RESULTS: This cohort study included 8,744 participants, and during a median follow-up period of 106 months, 1,552 (17.7%) deaths were recorded, with 511 attributed to cardiovascular disease. Kaplan-Meier curves comparing quartiles of dietary niacin intake showed significant differences in both all-cause and cardiovascular mortality rates (log-rank p < 0.001). In the fully adjusted model, the highest quartile of dietary niacin intake was associated with HRs of 0.68 (95% CI: 0.54, 0.87, P = 0.002) for all-cause mortality and 0.63 (95% CI: 0.39, 0.78, P < 0.001) for cardiovascular mortality. CONCLUSION: The results of this cohort study suggest that higher dietary niacin intake is associated with reduced cardiovascular and all-cause mortality risks in the metabolic syndrome population. Furthermore, there appears to be a dose-response relationship between dietary niacin intake and the risks of all-cause and cardiovascular mortality.


Subject(s)
Cardiovascular Diseases , Diet , Metabolic Syndrome , Niacin , Humans , Niacin/administration & dosage , Metabolic Syndrome/mortality , Male , Female , Cardiovascular Diseases/mortality , Middle Aged , Diet/methods , Diet/statistics & numerical data , Adult , Proportional Hazards Models , Cohort Studies , Kaplan-Meier Estimate , Aged , Risk Factors , Follow-Up Studies
13.
EBioMedicine ; 107: 105311, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39191174

ABSTRACT

BACKGROUND: The accurate evaluation of axillary lymph node (ALN) response to neoadjuvant chemotherapy (NAC) in breast cancer holds great value. This study aimed to develop an artificial intelligence system utilising multiregional dynamic contrast-enhanced MRI (DCE-MRI) and clinicopathological characteristics to predict axillary pathological complete response (pCR) after NAC in breast cancer. METHODS: This study included retrospective and prospective datasets from six medical centres in China between May 2018 and December 2023. A fully automated integrated system based on deep learning (FAIS-DL) was built to perform tumour and ALN segmentation and axillary pCR prediction sequentially. The predictive performance of FAIS-DL was assessed using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity. RNA sequencing analysis were conducted on 45 patients to explore the biological basis of FAIS-DL. FINDINGS: 1145 patients (mean age, 50 years ±10 [SD]) were evaluated. Among these patients, 506 were in the training and validation sets (axillary pCR rate of 40.3%), 127 in the internal test set (axillary pCR rate of 37.8%), 414 in the pooled external test set (axillary pCR rate of 48.8%), and 98 in the prospective test set (axillary pCR rate of 43.9%). For predicting axillary pCR, FAIS-DL achieved AUCs of 0.95, 0.93, and 0.94 in the internal test set, pooled external test set, and prospective test set, respectively, which were also significantly higher than those of the clinical model and deep learning models based on single-regional DCE-MRI (all P < 0.05, DeLong test). In the pooled external and prospective test sets, the FAIS-DL decreased the unnecessary axillary lymph node dissection rate from 47.9% to 6.8%, and increased the benefit rate from 52.2% to 86.5%. RNA sequencing analysis revealed that high FAIS-DL scores were associated with the upregulation of immune-mediated genes and pathways. INTERPRETATION: FAIS-DL has demonstrated satisfactory performance in predicting axillary pCR, which may guide the formulation of personalised treatment regimens for patients with breast cancer in clinical practice. FUNDING: This study was supported by the National Natural Science Foundation of China (82371933), National Natural Science Foundation of Shandong Province of China (ZR2021MH120), Mount Taishan Scholars and Young Experts Program (tsqn202211378), Key Projects of China Medicine Education Association (2022KTM030), China Postdoctoral Science Foundation (314730), and Beijing Postdoctoral Research Foundation (2023-zz-012).


Subject(s)
Breast Neoplasms , Lymph Nodes , Magnetic Resonance Imaging , Neoadjuvant Therapy , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/diagnostic imaging , Female , Middle Aged , Magnetic Resonance Imaging/methods , Lymph Nodes/pathology , Lymph Nodes/diagnostic imaging , Axilla , Adult , ROC Curve , Contrast Media , Deep Learning , Lymphatic Metastasis , Treatment Outcome , Retrospective Studies , Prospective Studies , Prognosis
14.
J Ethnopharmacol ; 335: 118660, 2024 Dec 05.
Article in English | MEDLINE | ID: mdl-39121926

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Osteoarthritis (OA) is a degenerative disease, its characteristic lies in the inflammation and extracellular matrix (ECM) degradation, can lead to significant personal disability and social burden. Lycopodium japonicum Thunb. (LJT) is a lycopinaceae plant with anti-inflammatory and analgesic effects. In traditional Oriental medicine, LJT is commonly used to treat a variety of conditions, including osteoarthritis and low back pain. AIM OF THE STUDY: To investigate the anti-apoptotic, anti-inflammatory and anti-senescence properties of LJT in IL-1ß-induced mouse chondrocytes, and to clarify the underlying mechanisms involved. In addition, the study also examined the effects of LJT by establishing a mouse model of osteoarthritis. The ultimate goal is to identify the mechanism of LJT as an anti-osteoarthritis agent. MATERIALS AND METHODS: In this research, molecular docking and network pharmacology analysis were performed to identify the latent pathways and key targets of LJT action. The CCK-8 kit was used to evaluate LJT's effect on chondrocyte viability. Western blotting, Immunofluorescence, TUNEL staining kit, and SA-ß-gal staining were employed to verify LJT's impact on chondrocytes. Additionally, SO, HE, and Immunohistochemical were utilized to assess LJT's effects on osteoarthritis in mice. In vitro and in vivo experiments were performed to verify the potential mechanism of LJT in OA. RESULTS: Network pharmacology analysis revealed that AKT1, PTGS2, and ESR1 were the key candidate targets for the treatment of OA with LJT. The results of molecular docking indicated that AKT1 exhibited a low binding affinity to the principal constituents of LJT. Hence, we have chosen STING, an upstream regulator of PTGS2, as our target for investigation. Molecular docking revealed that sitosterol, formononetin, stigmasterol and alpha-Onocerin, the main components of LJT, have good binding activity with STING. In vitro experiments showed that LJT inhibited IL-1ß-mediated secretion of inflammatory mediators, apoptosis and senescence of chondrocytes. The results showed that LJT abolished cartilage degeneration induced by unstable medial meniscus (DMM) in mice. Mechanism research has shown that LJT by inhibiting the STING/NF-κB signaling pathways, down-regulating the NF-κB activation, so as to inhibit the development of OA. CONCLUSION: LJT reversed the progression of OA by inhibiting inflammation, apoptosis and senescence in animal models and chondrocytes. The effects of LJT are mediated through the STING/NF-κB pathway.


Subject(s)
Anti-Inflammatory Agents , Apoptosis , Chondrocytes , Lycopodium , NF-kappa B , Osteoarthritis , Plant Extracts , Signal Transduction , Animals , Chondrocytes/drug effects , Chondrocytes/metabolism , Apoptosis/drug effects , Osteoarthritis/drug therapy , Osteoarthritis/pathology , Signal Transduction/drug effects , NF-kappa B/metabolism , Mice , Lycopodium/chemistry , Plant Extracts/pharmacology , Anti-Inflammatory Agents/pharmacology , Male , Molecular Docking Simulation , Inflammation/drug therapy , Inflammation/pathology , Membrane Proteins/metabolism , Cellular Senescence/drug effects , Mice, Inbred C57BL , Interleukin-1beta/metabolism , Cells, Cultured
15.
J Control Release ; 375: 20-46, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39214316

ABSTRACT

The microbiota at different sites in the body is closely related to disease. The intake of probiotics is an effective strategy to alleviate diseases and be adjuvant in their treatment. However, probiotics may suffer from harsh environments and colonization resistance, making it difficult to maintain a sufficient number of live probiotics to reach the target sites and exert their original probiotic effects. Encapsulation of probiotics is an effective strategy. Therefore, probiotic delivery systems, as effective methods, have been continuously developed and innovated to ensure that probiotics are effectively delivered to the targeted site. In this review, initially, the design of probiotic delivery systems is reviewed from four aspects: probiotic characteristics, processing technologies, cell-derived wall materials, and interactions between wall materials. Subsequently, the review focuses on the effects of probiotic delivery systems that target four main microbial colonization sites: the oral cavity, skin, intestine, and vagina, as well as disease sites such as tumors. Finally, this review also discusses the safety concerns of probiotic delivery systems in the treatment of disease and the challenges and limitations of implementing this method in clinical studies. It is necessary to conduct more clinical studies to evaluate the effectiveness of different probiotic delivery systems in the treatment of diseases.

16.
Nat Biomed Eng ; 8(9): 1109-1123, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39209948

ABSTRACT

Light-sheet fluorescence microscopy (LSFM) is a widely used technique for imaging cleared tissue and living samples. However, high-performance LSFM systems are typically expensive and not easily scalable. Here we introduce a low-cost, scalable and versatile LSFM framework, which we named 'projected light-sheet microscopy' (pLSM), with high imaging performance and small device and computational footprints. We characterized the capabilities of pLSM, which repurposes readily available consumer-grade components, optimized optics, over-network control architecture and software-driven light-sheet modulation, by performing high-resolution mapping of cleared mouse brains and of post-mortem pathological human brain samples, and via the molecular phenotyping of brain and blood-vessel organoids derived from human induced pluripotent stem cells. We also report a method that leverages pLSM for the live imaging of the dynamics of sparsely labelled multi-layered bacterial pellicle biofilms at an air-liquid interface. pLSM can make high-resolution LSFM for biomedical applications more accessible, affordable and scalable.


Subject(s)
Brain , Induced Pluripotent Stem Cells , Microscopy, Fluorescence , Animals , Humans , Microscopy, Fluorescence/methods , Mice , Brain/diagnostic imaging , Induced Pluripotent Stem Cells/cytology , Organoids/diagnostic imaging , Biofilms
17.
Small ; : e2404402, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963075

ABSTRACT

Developing multifunctional, stimuli-responsive nanomedicine is intriguing because it has the potential to effectively treat cancer. Yet, poor tumor penetration of nanodrugs results in limited antitumor efficacy. Herein, an oxygen-driven silicon-based nanomotor (Si-motor) loaded with MnO and CaO2 nanoparticles is developed, which can move in tumor microenvironment (TME) by the cascade reaction of CaO2 and MnO. Under acidic TME, CaO2 reacts with acid to release Ca2+ to induce mitochondrial damage and simultaneously produces O2 and H2O2, when the loaded MnO exerts Fenton-like activity to produce ·OH and O2 based on the produced H2O2. The generated O2 drives Si-motor forward, thus endowing active delivery capability of the formed motors in TME. Meanwhile, MnO with glutathione (GSH) depletion ability further prevents reactive oxygen species (ROS) from being destroyed. Such TME actuated Si-motor with enhanced cellular uptake and deep penetration provides amplification of synergistic oxidative stresscaused by intracellular Ca2 + overloading, GSH depletion induced by Mn2+, and Mn2+ mediated chemodynamic treatment (CDT), leading to excellent tumor cell death. The created nanomotor may offer an effective platform for active synergistic cancer treatment.

18.
Front Neurol ; 15: 1414738, 2024.
Article in English | MEDLINE | ID: mdl-39081341

ABSTRACT

Unilateral auditory deprivation (UAD) results in cross-modal reorganization of the auditory cortex (AC), which can impair auditory and cognitive functions and diminish the recovery effect of cochlear implantation. Moreover, the subcortical areas provide extensive ascending projections to the AC. To date, a thorough systematic study of subcortical auditory neural plasticity has not been undertaken. Therefore, this review aims to summarize the current evidence on the bidirectional remodeling of the central auditory system caused by UAD, particularly the changes in subcortical neural plasticity. Lateral changes occur in the cochlear nucleus, lateral superior olive, medial nucleus of the trapezoid body, inferior colliculus, and AC of individuals with UAD. Moreover, asymmetric neural activity becomes less prominent in the higher auditory nuclei, which may be due to cross-projection regulation of the bilateral pathway. As a result, subcortical auditory neural plasticity caused by UAD may contribute to the outcomes of cochlear implantation in patients with single-sided deafness (SSD), and the development of intervention strategies for patients with SSD is crucial. Considering that previous studies have focused predominantly on the neural plasticity of the AC, we believe that bidirectional remodeling of subcortical areas after UAD is also crucial for investigating the mechanisms of interventions.

19.
Article in English | MEDLINE | ID: mdl-38958272

ABSTRACT

OBJECTIVE: To determine whether virtual reality (VR)-based dynamic standing balance training improves three elements of sensory integration and investigate whether VR-based dynamic standing balance training results in improved outcomes, especially regarding balance and gait, compared to the standard training method. DESIGN: This single-blinded, randomized, controlled trial involved 30 patients with hemiplegia. The experimental (EG, n = 15) and control (CG, n = 15) groups received VR augmented-standing balance training or standard standing balance training, respectively, for 20 minutes, 5 days a week, for 3 weeks. The patients were assessed for primary (Sensory Organization Test [SOT] and the Berg balance scale [BBS]) and secondary (the functional reaching test and timed up-and-go test [TUG]) outcomes before and after training. RESULTS: From preintervention to postintervention, the BBS score (F = 26.295, p < 0.05), TUG score (F = 18.12, p < 0.05), mean score of conditions 2 (F = 4.36, p < 0.05) and 6 (F = 5.61, p < 0.05), and composite score of the SOT (F = 5.385, p < 0.05) in both groups were significantly improved. However, there was no significant difference between EG and CG (time*group p > 0.05). CONCLUSION: VR combined with standing balance training improved sensory integration, postural control, balance, and gait ability in patients with hemiplegia, reducing fall risk. However, outcomes were comparable to general balance training regarding balance and gait.

20.
Front Oncol ; 14: 1393414, 2024.
Article in English | MEDLINE | ID: mdl-38993646

ABSTRACT

Introduction: To assess the performance of the European Thyroid Association Thyroid Imaging and Reporting Data System (EU-TIRADS) and the Korean Thyroid Imaging Reporting and Data System (K-TIRADS), which combine risk stratification systems for thyroid nodules (TN-RSS) and cervical lymph nodes (LN-RSS) in diagnosing malignant and metastatic thyroid cancer in a single referral center. Methods: We retrospectively analyzed 2,055 consecutive patients who underwent thyroidectomy or fine-needle aspiration (FNA) from January 2021 to December 2022. TNs and LNs were categorized according to the ultrasonography (US) features of EU-TIRADS and K-TIRADS, respectively. The diagnostic performance and postponed malignancy rate (PMR) were compared with those of EU-TIRADS and K-TIRADS. PMR was defined as the number of patients with malignant nodules not recommended for biopsy among patients with cervical LN metastasis. Results: According to the EU-TIRADS and K-TIRADS, for TN-RSS alone, there were no significant differences in sensitivity, specificity, accuracy, unnecessary FNA rate (UFR), missed malignancy rate (MMR), and PMR between the two TIRADSs (29.0% vs. 28.8%, 50.5% vs. 51.1%, 32.3% vs. 32.2%, 23.6% vs. 23.5%, 88.6% vs. 88.5%, and 54.2% vs. 54.5%, P > 0.05 for all). Combining the LN-RSS increased the diagnostic accuracy (42.7% vs. 32.3% in EU-TIRADS; 38.8% vs. 32.2% in K-TIRADS) and decreased the PMR (54.2% vs. 33.9% in EU-TIRADS; 54.5% vs. 39.3% in K-TIRADS). EU-TIRADS had higher sensitivity and accuracy and lower PMR than K-TIRADS (41.3% vs. 36.7%, 42.7% vs. 38.8%,33.9% vs. 39.3%, P < 0.05 for all). Conclusions: A combination of TN-RSS and LN-RSS for the management of thyroid nodules may be associated with a reduction in PMR, with enhanced sensitivity and accuracy for thyroid cancers in EU-TIRADS and K-TIRADS. These results may offer a new direction for the detection of aggressive thyroid cancers.

SELECTION OF CITATIONS
SEARCH DETAIL