Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(47): 55174-55182, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37966372

ABSTRACT

Optical tweezers use the momentum of photons to capture and manipulate particles in a noncontact way. Although related techniques have been widely used in biology and materials, research on viruses is still relatively limited. It is hard to optically trap viruses because trap stiffness is rather low and the size of viruses is too small. Here, we used an optical tweezers system coupled with a laser confocal fluorescence imaging system, which allows individual viruses to be imaged and trapped in real time and analyzed using multiple parameters in the culture medium. We show that a single virus tagged by quantum dots (QDs) can increase the real part of polarizability, further increasing gradient force and trap stiffness. With this method, we not only can trap and manipulate viruses in real time but also can analyze their interactions with other targets.


Subject(s)
Optical Devices , Quantum Dots , Optical Tweezers , Photons , Motion
2.
Anal Chem ; 95(37): 14086-14093, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37665143

ABSTRACT

In recent years, optical tweezers have become a novel tool for biodetection, and to improve the inefficiency of a single trap, the development of multitraps is required. Herein, we constructed a set of hybrid multitrap optical tweezers with the balance of stability and flexibility by the combination of two different beam splitters, a diffraction optical element (DOE) and galvano mirrors (GMs), to capture polystyrene (PS) microbeads in aqueous solutions to create an 18-trap suspended array. A sandwich hybridization strategy of DNA-miRNA-DNA was adopted to detect three kinds of target miRNAs associated with triple negative breast cancer (TNBC), in which different upconversion nanoparticles (UCNPs) with red, green, and blue emissions were applied as luminescent tags to encode the carrier PS microbeads to further indicate the levels of the targets. With encoded luminescent microbeads imaged by a three-channel microscopic system, the biodetection displayed high sensitivity with low limits of detection (LODs) of 0.27, 0.32, and 0.33 fM and exceptional linear ranges of 0.5 fM to 1 nM, 0.7 fM to 1 nM, and 1 fM to 1 nM for miR-343-3p, miR-155, and miR-199a-5p, respectively. In addition, this bead-based assay method was demonstrated to have the potential for being applied in patients' serum by satisfactory standard addition recovery experiment results.


Subject(s)
MicroRNAs , Humans , MicroRNAs/genetics , Microspheres , Optical Tweezers , Polystyrenes
3.
Anal Chem ; 95(12): 5443-5453, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36930753

ABSTRACT

The detection of hydrogen sulfide (H2S), the third gas signaling molecule, is a promising strategy for identifying the occurrence of certain diseases. However, the conventional single- or dual-signal detection can introduce false-positive or false-negative results, which ultimately decreases the diagnostic accuracy. To address this limitation, we developed a luminescent, photothermal, and electrochemical triple-signal detection platform by optically trapping the synthetic highly doped upconversion coupled SiO2 microbeads coated with metal-organic frameworks H-UCNP-SiO2@HKUST-1 (H-USH) to detect the concentration of H2S. The H-USH was first synthesized and proved to have stable structure and excellent luminescent, photothermal, and electrochemical properties. Under 980 nm optical trapping and 808 nm irradiation, H-USH showed great detection linearity, a low limit of detection, and high specificity for H2S quantification via triple-signal detection. Moreover, H-USH was captured by optical tweezers to realize quantitative detection of H2S content in serum of acute pancreatitis and spontaneously hypertensive rats. Finally, by analyzing the receiver operating characteristic (ROC) curve, we concluded that triple-signal detection of H2S was more accurate than single- or dual-signal detection, which overcame the problem of false-negative/positive results in the detection of H2S in actual serum samples.


Subject(s)
Hydrogen Sulfide , Pancreatitis , Rats , Animals , Hydrogen Sulfide/chemistry , Luminescence , Electrochemistry , Acute Disease , Silicon Dioxide , Microspheres
SELECTION OF CITATIONS
SEARCH DETAIL
...