Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 395
Filter
1.
Front Neurosci ; 18: 1356241, 2024.
Article in English | MEDLINE | ID: mdl-38694903

ABSTRACT

Introduction: Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by impairments in motor skills, communication, emotional expression, and social interaction. Accurate diagnosis of ASD remains challenging due to the reliance on subjective behavioral observations and assessment scales, lacking objective diagnostic indicators. Methods: In this study, we introduced a novel approach for diagnosing ASD, leveraging T1-based gray matter and ASL-based cerebral blood flow network metrics. Thirty preschool-aged patients with ASD and twenty-two typically developing (TD) individuals were enrolled. Brain network features, including gray matter and cerebral blood flow metrics, were extracted from both T1-weighted magnetic resonance imaging (MRI) and ASL images. Feature selection was performed using statistical t-tests and Minimum Redundancy Maximum Relevance (mRMR). A machine learning model based on random vector functional link network was constructed for diagnosis. Results: The proposed approach demonstrated a classification accuracy of 84.91% in distinguishing ASD from TD. Key discriminating network features were identified in the inferior frontal gyrus and superior occipital gyrus, regions critical for social and executive functions in ASD patients. Discussion: Our study presents an objective and effective approach to the clinical diagnosis of ASD, overcoming the limitations of subjective behavioral observations. The identified brain network features provide insights into the neurobiological mechanisms underlying ASD, potentially leading to more targeted interventions.

2.
Anal Chem ; 96(19): 7669-7678, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38708542

ABSTRACT

Protein tyrosine kinase-7 (PTK7) has been reported as a vital participant in the Wnt signaling pathway, influencing tumorigenesis and metastasis. However, their specific roles in the mechanisms underlying cancer development and progression remain elusive. Here, using direct stochastic optical reconstruction microscopy (dSTORM) with aptamer-probe labeling, we first revealed that a weakening clustering distribution of PTK7 on the basal membranes happened as cellular migration increased during cancer progression. This correspondence was further supported by a diminished aggregated state of PTK7 caused by direct enhancement of cell migration. By comparing the alterations in PTK7 distribution with activation or inhibition of specific Wnt signaling pathway, we speculated that PTK7 could modulate cell migration by participating in the interplay between canonical Wnt (in MCF7 cells) and noncanonical Wnt signals (in MDA-MB-231 cells). Furthermore, we discovered that the spatial distribution morphology of PTK7 was also subject to the hydrolysis ability and activation state of the related hydrolase Matrix metallopeptidase14 (MMP14). This function-related specific assembly of PTK7 reveals a clear relationship between PTK7 and cancer. Meanwhile, potential molecular interactions predicted by the apparent assembly morphology can promote a deep understanding of the functional mechanism of PTK7 in cancer progress.


Subject(s)
Receptor Protein-Tyrosine Kinases , Humans , Receptor Protein-Tyrosine Kinases/metabolism , Cell Movement , Cell Adhesion Molecules/metabolism , Wnt Signaling Pathway , Cell Line, Tumor , Neoplasms/metabolism , Neoplasms/pathology , Matrix Metalloproteinase 14/metabolism
3.
J Med Chem ; 67(10): 8201-8224, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38736187

ABSTRACT

Although vaccination remains the prevalent prophylactic means for controlling Influenza A virus (IAV) infections, novel structural antivirus small-molecule drugs with new mechanisms of action for treating IAV are highly desirable. Herein, we describe a modular biomimetic strategy to expeditiously achieve a new class of macrocycles featuring oxime, which might target the hemagglutinin (HA)-mediated IAV entry into the host cells. SAR analysis revealed that the size and linker of the macrocycles play an important role in improving potency. Particularly, as a 14-membered macrocyclic oxime, 37 exhibited potent inhibitory activity against IAV H1N1 with an EC50 value of 23 nM and low cytotoxicity, which alleviated cytopathic effects and protected cell survival obviously after H1N1 infection. Furthermore, 37 showed significant synergistic activity with neuraminidase inhibitor oseltamivir in vitro.


Subject(s)
Antiviral Agents , Influenza A Virus, H1N1 Subtype , Macrocyclic Compounds , Oximes , Influenza A Virus, H1N1 Subtype/drug effects , Oximes/pharmacology , Oximes/chemistry , Oximes/chemical synthesis , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Structure-Activity Relationship , Humans , Dogs , Macrocyclic Compounds/pharmacology , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/chemical synthesis , Animals , Madin Darby Canine Kidney Cells , Drug Discovery , Biomimetics , Oseltamivir/pharmacology , Oseltamivir/chemistry
4.
Aging (Albany NY) ; 16(9): 7596-7621, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38742936

ABSTRACT

Colon adenocarcinoma (COAD), a frequently encountered and highly lethal malignancy of the digestive system, has been the focus of intensive research regarding its prognosis. The intricate immune microenvironment plays a pivotal role in the pathological progression of COAD; nevertheless, the underlying molecular mechanisms remain incompletely understood. This study aims to explore the immune gene expression patterns in COAD, construct a robust prognostic model, and delve into the molecular mechanisms and potential therapeutic targets for COAD liver metastasis, thereby providing critical support for individualized treatment strategies and prognostic evaluation. Initially, we curated a comprehensive dataset by screening 2600 immune-related genes (IRGs) from the ImmPort and InnateDB databases, successfully obtaining a rich data resource. Subsequently, the COAD patient cohort was classified using the non-negative matrix factorization (NMF) algorithm, enabling accurate categorization. Continuing on, utilizing the weighted gene co-expression network analysis (WGCNA) method, we analyzed the top 5000 genes with the smallest p-values among the differentially expressed genes (DEGs) between immune subtypes. Through this rigorous screening process, we identified the gene modules with the strongest correlation to the COAD subpopulation, and the intersection of genes in these modules with DEGs (COAD vs COAD vs Normal colon tissue) is referred to as Differentially Expressed Immune Genes Associated with COAD (DEIGRC). Employing diverse bioinformatics methodologies, we successfully developed a prognostic model (DPM) consisting of six genes derived from the DEIGRC, which was further validated across multiple independent datasets. Not only does this predictive model accurately forecast the prognosis of COAD patients, but it also provides valuable insights for formulating personalized treatment regimens. Within the constructed DPM, we observed a downregulation of CALB2 expression levels in COAD tissues, whereas NOXA1, KDF1, LARS2, GSR, and TIMP1 exhibited upregulated expression levels. These genes likely play indispensable roles in the initiation and progression of COAD and thus represent potential therapeutic targets for patient management. Furthermore, our investigation into the molecular mechanisms and therapeutic targets for COAD liver metastasis revealed associations with relevant processes such as fat digestion and absorption, cancer gene protein polysaccharides, and nitrogen metabolism. Consequently, genes including CAV1, ANXA1, CPS1, EDNRA, and GC emerge as promising candidates as therapeutic targets for COAD liver metastasis, thereby providing crucial insights for future clinical practices and drug development. In summary, this study uncovers the immune gene expression patterns in COAD, establishes a robust prognostic model, and elucidates the molecular mechanisms and potential therapeutic targets for COAD liver metastasis, thereby possessing significant theoretical and clinical implications. These findings are anticipated to offer substantial support for both the treatment and prognosis management of COAD patients.


Subject(s)
Adenocarcinoma , Algorithms , Colonic Neoplasms , Gene Expression Regulation, Neoplastic , Immunotherapy , Humans , Colonic Neoplasms/genetics , Colonic Neoplasms/immunology , Colonic Neoplasms/therapy , Colonic Neoplasms/pathology , Adenocarcinoma/genetics , Adenocarcinoma/immunology , Adenocarcinoma/therapy , Adenocarcinoma/pathology , Prognosis , Gene Expression Profiling , Gene Regulatory Networks , Biomarkers, Tumor/genetics , Transcriptome , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Databases, Genetic , Computational Biology
5.
Expert Opin Investig Drugs ; : 1-10, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38662639

ABSTRACT

BACKGROUND: SHEN26, an oral broad-spectrum antiviral drug, possesses potent preclinical activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has a favorable safety profile. METHODS: We report safety, tolerability, and pharmacokinetic data from a randomized, double-blind, placebo-controlled phase I study of SHEN26. Eighty-six healthy subjects were enrolled in the three studies: a single ascending-dose study (SAD), a multiple ascending-dose study (MAD), and a food-effect study (FE). RESULTS: In the SAD trial, the maximum observed plasma concentration (Cmax) and area under the curve (AUC) of the SHEN26 rapid metabolite SHEN26-69-0 increased approximately dose-proportionally in the 50-400 mg fasting dose range. In the 800 mg dose group, standard meals increased the Cmax and AUC of SHEN26-69-0. In the MAD trial, the accumulation ratios of Cmax and AUC indicated slight accumulation upon repeated SHEN26 dosing. In the FE trial, a high-fat meal prolonged the time to maximum plasma concentration (Tmax) and increased the Cmax and AUC of SHEN26-69-0 compared with fasting administration. Most treatment-related adverse events were mild and resolved without treatment. CONCLUSION: SHEN26 demonstrated satisfactory safety and tolerability in healthy subjects, which supports the continued study of SHEN26 against SARS-CoV-2. TRIAL REGISTRATION: The trial is registered in ClinicalTrials.gov (CT. gov identifier: NCT05504746).

6.
Environ Sci Pollut Res Int ; 31(21): 30750-30758, 2024 May.
Article in English | MEDLINE | ID: mdl-38613748

ABSTRACT

The Wuda coal fire in Inner Mongolia, China, is a global catastrophic event. It emits a huge volume of organic pollutants, including polycyclic aromatic compounds (PACs), which are widely concerning due to their physiological toxicity and environmental persistence. However, there is no systematic study on the enrichment and migration patterns of PACs emitted from coal fires. Here, we compared samples from coal fire sponges and surrounding soil, and analyzed 47 PACs using GC × GC-TOFMS. Data analysis showed that the average content of 16 polycyclic aromatic hydrocarbons (16PAHs) in the coal fire sponge was 15400.65 ng/g, which is about 4.2 times higher than that in the surrounding soil. Meanwhile, 31 PACs were detected at levels far exceeding those of 16PAHs. The distribution pattern of PACs showed that coal fire sources are more likely to produce and store 16PAHs while surrounding soils are more likely to be enriched with PAH derivatives. The cancer risk assessment revealed a significant cancer risk in both the coal fires and the surrounding soil. The formation mechanism of oxygenated PAHs was also explored, and it was found that coal fires emit 16PAHs and alkylated PAHs, which oxidize to form oxygenated PAHs during migration to surrounding soils. The value of naphthaldehyde/alkylated naphthalene (< 2) can be referenced as characteristic markers of coal fire pollution. This provides a new perspective on the sources of PACs in the current environment.


Subject(s)
Coal , Polycyclic Aromatic Hydrocarbons , Polycyclic Aromatic Hydrocarbons/analysis , Risk Assessment , China , Environmental Monitoring , Fires , Humans , Soil/chemistry , Soil Pollutants/analysis
7.
Heliyon ; 10(7): e28278, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560217

ABSTRACT

Background: Globally, lung carcinoma remains the leading cause of death, with its associated morbidity and mortality rates remaining elevated. Despite the slow advancement of treatment, the outlook remains bleak. Cellular senescence represents a halt in the cell cycle, encompassing a range of physiological and pathological activities, along with diverse phenotypic alterations, including variations in secretory phenotype, macromolecular harm, and metabolic disturbances. Research has revealed its vital function in the formation and growth of tumors. This study aimed to examine cellular senescence-related mRNAs linked to the outlook of non-small cell lung cancer (NSCLC) and to formulate a predictive risk framework for NSCLC. Methods: We acquired the NSCLC expression data from The Cancer Genome Atlas (TCGA) to examine mRNAs linked to cellular senescence. Both single-variable and multiple-variable cox proportion risk assessments were utilized to determine the traits of cellular senescence-related mRNAs linked to NSCLC prognosis. Subsequently, the prognostic model for cellular senescence-related mRNAs was integrated with clinical-pathological characteristics to create a prognostic nomogram. Furthermore, the study delved into the risk-oriented predictive model, examining immune infiltration and responses to immunotherapy among both high and low-risk categories. Results: Utilizing both univariate and multivariate Cox proportion risk assessments, a risk model comprising 12 mRNAs associated with cellular aging was ultimately developed: IGFBP1, TLR3, WT1, ID1, PTTG1, ERRFI1, HEPACAM, MAP2K3, RAD21, NANOG, PRKCD, SOX5. Univariate analysis and multivariate analysis illustrated that the risk score served as a standalone indicator for prognosis, and the hazard ratio (HR) of the risk score were 1.182 (1.139-1.226) (p < 0.001) and 1.162 (1.119 - 1.206) (p < 0.001), respectively. Individual prognoses were forecasted using nomogram, c-index, and principal component analysis (PCA). Furthermore, the risk-oriented model revealed notable statistical variances in immune infiltration and response to immunotherapy among the high and low risk categories. Conclusions: This study shows that mRNAs related to cell senescence associated with prognosis are reliable predictors of NSCLC immunotherapy reaction and prognosis.

8.
DNA Res ; 31(3)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38600880

ABSTRACT

We report the complete telomere-to-telomere genome assembly of Oldenlandia diffusa which renowned in traditional Chinese medicine, comprising 16 chromosomes and spanning 499.7 Mb. The assembly showcases 28 telomeres and minimal gaps, with a total of only five. Repeat sequences constitute 46.41% of the genome, and 49,701 potential protein-coding genes have been predicted. Compared with O. corymbosa, O. diffusa exhibits chromosome duplication and fusion events, diverging 20.34 million years ago. Additionally, a total of 11 clusters of terpene synthase have been identified. The comprehensive genome sequence, gene catalog, and terpene synthase clusters of O. diffusa detailed in this study will significantly contribute to advancing research in this species' genetic, genomic, and pharmacological aspects.


Subject(s)
Genome, Plant , Telomere , Telomere/genetics , Alkyl and Aryl Transferases/genetics , Chromosome Duplication
9.
Infect Dis Ther ; 13(4): 941-951, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38483776

ABSTRACT

INTRODUCTION: The replacement intervals for infusion sets may differ among healthcare institutions, which may have an impact on the occurrence of central line-associated bloodstream infections (CLABSI). Nevertheless, there exists a limited amount of high-quality evidence available to assist clinicians in determining the most suitable replacement intervals for infusion sets. Therefore, the objective of this trial is to compare the efficacy of 24-h and 96-h replacement intervals for infusion sets on CLABSI among critically ill adults who have central venous access devices. METHODS: This is a multicenter, parallel-group randomized controlled trial that will investigate the effect of infusion set replacement intervals on CLABSI in adult patients admitted to intensive care units (ICUs). The study will enroll 1240 participants who meet the inclusion criteria, which includes being 18 years or older, expected to stay in the ICU for longer than 96 h, and in need of central venous access. Participants will be randomly assigned to either a control group receiving a 96-h replacement interval or a treatment group receiving a 24-h replacement interval. PLANNED OUTCOME: The primary outcome of this trial is the rate of CLABSI within 28 days after randomization. CONCLUSION: This is the first randomized controlled trial to investigate the effects of infusion set replacement at 24-h and 96-h intervals on CLABSI in ICU patients. TRIAL REGISTRATION: ClinicalTrials.gov identifier, NCT05359601.

10.
J Org Chem ; 89(7): 5029-5037, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38531374

ABSTRACT

Inubritantrimer A (1), a trace trimerized sesquiterpenoid [4 + 2] adduct featuring an unusual exo-exo type spiro-polycyclic scaffold, together with three new endo-exo [4 + 2] adducts, inubritantrimers B-D (2-4), were discovered from the flowers of Inula britannica. Their structures were elucidated using 1D/2D NMR, X-ray diffraction, and ECD approaches. 1 is characterized as a novel exo-exo trimer, synthesized biogenetically from three sesquiterpenoid monomers, featuring a unique linkage of C-11/C-1', C-13/C-3' and C-13'/C-3″, C-11'/C-1″ through a two-step exo [4 + 2] cycloaddition process. Compounds 1-4 exhibited modest cytotoxicity against breast cancer cells with IC50 values in the range of 5.84-12.01 µM.


Subject(s)
Inula , Sesquiterpenes , Inula/chemistry , Molecular Structure , Magnetic Resonance Spectroscopy , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry
11.
J Integr Neurosci ; 23(3): 55, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38538213

ABSTRACT

BACKGROUND: This study used bioinformatics combined with statistical methods to identify plasma biomarkers that can predict intracranial aneurysm (IA) rupture and provide a strong theoretical basis for the search for new IA rupture prevention methods. METHODS: We downloaded gene expression profiles in the GSE36791 and GSE122897 datasets from the Gene Expression Omnibus (GEO) database. Data were normalized using the "sva" R package and differentially expressed genes (DEGs) were identified using the "limma" R package. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were used for DEG function analysis. Univariate logistic regression analysis, least absolute shrinkage and selection operator (LASSO) regression modeling, and the support vector machine recursive feature elimination (SVM-RFE) algorithm were used to identify key biomarker genes. Data from GSE122897 and GSE13353 were extracted to verify our findings. RESULTS: Eight co-DEG mRNAs were identified in the GSE36791 and GSE122897 datasets. Genes associated with inflammatory responses were clustered in the co-DEG mRNAs in IAs. CD6 and C-C chemokine receptor 7 (CCR7) were identified as key genes associated with IA. CD6 and CCR7 were upregulated in patients with IA and their expression levels were positively correlated. There were significant differences in the infiltration of immune cells between IAs and normal vascular wall tissues (p < 0.05). A predictive nomogram was designed using this two-gene signature. Binary transformation of CD6 and CCR7 was performed according to the cut-off value to construct the receiver-operating characteristic (ROC) curve and showed a strong predictive ability of the CD6-CCR7 gene signature (p < 0.01; area under the curve (AUC): 0.90; 95% confidence interval (CI): 0.88-0.92). Furthermore, validation of this two-gene signature using the GSE122897 and GSE13353 datasets proved it to be valuable for clinical application. CONCLUSIONS: The identified two-gene signature (CD6-CCR7) for evaluating the risk of IA rupture demonstrated good clinical application value.


Subject(s)
Intracranial Aneurysm , Humans , Receptors, CCR7/genetics , Intracranial Aneurysm/genetics , Algorithms , Computational Biology , Databases, Factual
12.
Adv Healthc Mater ; : e2303755, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424475

ABSTRACT

Short-chain antifungal peptides (AFPs) inspired by histatin 5 have been designed to address the problem of antifungal drug resistance. These AFPs demonstrate remarkable antifungal activity, with a minimal inhibitory concentration as low as 2 µg mL-1 . Notably, these AFPs display a strong preference for targeting fungi rather than bacteria and mammalian cells. This is achieved by binding the histidine-rich domains of the AFPs to the Ssa1/2 proteins in the fungal cell wall, as well as the reduced membrane-disrupting activity due to their low amphiphilicity. These peptides disrupt the nucleus and mitochondria once inside the cells, leading to reactive oxygen species production and cell damage. In a mouse model of vulvovaginal candidiasis, the AFPs demonstrate not only antifungal activity, but also promote the growth of beneficial Lactobacillus spp. This research provides valuable insights for the development of fungus-specific AFPs and offers a promising strategy for the treatment of fungal infectious diseases.

13.
J Neuroimmune Pharmacol ; 19(1): 4, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38305948

ABSTRACT

Inflammation plays an important role in the pathogenesis of depression; however, the underlying mechanisms remain unclear. Apart from the disordered circadian rhythm in animal models and patients with depression, dysfunction of clock genes has been reported to be involved with the progress of inflammation. This study aimed to investigate the role of circadian clock genes, especially brain and muscle ARNT-like 1 (Bmal1), in the linkage between inflammation and depression. Lipopolysaccharide (LPS)-challenged rats and BV2 cells were used in the present study. Four intraperitoneal LPS injections of 0.5 mg/kg were administered once every other day to the rats, and BV2 cells were challenged with LPS for 24 h at the working concentration of 1 mg/L, with or without the suppression of Bmal1 via small interfering RNA. The results showed that LPS could successfully induce depression-like behaviors and an "inflammatory storm" in rats, as indicated by the increased immobility time in the forced swimming test and the decreased saccharin preference index in the saccharin preference test, together with hyperactivity of the hypothalamic-pituitary-adrenal axis, hyperactivation of astrocyte and microglia, and increased peripheral and central abundance of tumor necrosis factor-α, interleukin 6, and C-reactive protein. Moreover, the protein expression levels of brain-derived neurotrophic factor, triggering receptor expressed on myeloid cells 1, Copine6, and Synaptotagmin1 (Syt-1) decreased in the hippocampus and hypothalamus, whereas the expression of triggering receptor expressed on myeloid cells 2 increased. Interestingly, the fluctuation of temperature and serum concentration of melatonin and corticosterone was significantly different between the groups. Furthermore, protein expression levels of the circadian locomotor output cycles kaput, cryptochrome 2, and period 2 was significantly reduced in the hippocampus of LPS-challenged rats, whereas Bmal1 expression was significantly increased in the hippocampus but decreased in the hypothalamus, where it was co-located with neurons, microglia, and astrocytes. Consistently, apart from the reduced cell viability and increased phagocytic ability, LPS-challenged BV2 cells presented a similar trend with the changed protein expression in the hippocampus of the LPS model rats. However, the pathological changes in BV2 cells induced by LPS were reversed after the suppression of Bmal1. These results indicated that LPS could induce depression-like pathological changes, and the underlying mechanism might be partly associated with the imbalanced expression of Bmal1 and its regulated dysfunction of the circadian rhythm.


Subject(s)
Depression , Lipopolysaccharides , Animals , Rats , Depression/chemically induced , Hippocampus , Hypothalamo-Hypophyseal System/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Lipopolysaccharides/toxicity , Muscles/metabolism , Pituitary-Adrenal System/metabolism
14.
Nanoscale ; 16(11): 5729-5736, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38407360

ABSTRACT

Spectroscopic single-molecule localization microscopy (sSMLM) simultaneously captures spatial localizations and spectral signatures, providing the ability of multiplexed and functional subcellular imaging applications. However, extracting accurate spectral information in sSMLM remains challenging due to the poor signal-to-noise ratio (SNR) of spectral images set by a limited photon budget from single-molecule fluorescence emission and inherent electronic noise during the image acquisition using digital cameras. Here, we report a novel spectrum-to-spectrum (Spec2Spec) framework, a self-supervised deep-learning network that can significantly suppress the noise and accurately recover low SNR emission spectra from a single-molecule localization event. A training strategy of Spec2Spec was designed for sSMLM data by exploiting correlated spectral information in spatially adjacent pixels, which contain independent noise. By validating the qualitative and quantitative performance of Spec2Spec on simulated and experimental sSMLM data, we demonstrated that Spec2Spec can improve the SNR and the structure similarity index measure (SSIM) of single-molecule spectra by about 6-fold and 3-fold, respectively, further facilitating 94.6% spectral classification accuracy and nearly 100% data utilization ratio in dual-color sSMLM imaging.

15.
Biochem Genet ; 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374521

ABSTRACT

Klinefelter syndrome (KS) is the most frequent genetic anomaly in infertile men. Given its unclear mechanism, we aim to investigate critical genes and pathways in the pathogenesis of KS based on three bulk and one single-cell transcriptome data sets from Gene Expression Omnibus. We merged two data sets (GSE42331 and GSE47584) with human KS whole blood samples. When comparing the control and KS samples, five hub genes, including defensin alpha 4 (DEFA4), bactericidal permeability increasing protein (BPI), myeloperoxidase (MPO), intelectin 1 (ITLN1), and Xg Glycoprotein (XG), were identified. Besides, infiltrated degree of certain immune cells such as CD56bright NK cell were positively associated with the expression of ITLN1 and XG. Kyoto Encyclopedia of Genes and Genomes analysis identified upregulated phosphatidylinositol 3-kinase (PI3K)/AKT pathway in KS. Gene set enrichment analysis followed by gene set variation analysis confirmed the upregulation of G2M checkpoint and heme metabolism in KS. Thereafter, the GSE200680 data set was used for external validation of the expression variation of hub genes from healthy to KS testicular samples, and each hub gene yielded excellent discriminatory capability for KS without exception. At the single-cell level, the GSE136353 data set was utilized to evaluate intercellular communication between different cell types in KS patient, and strong correlations were detected between macrophages/ dendritic cells/ NK cells and the other cell types. Collectively, we provided hub genes, pathways, immune cell infiltration degree, and cell-cell communication in KS, warranting novel insights into the pathogenesis of this disease.

16.
Environ Int ; 185: 108513, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38382403

ABSTRACT

Cadmium (Cd) is a toxic heavy metal found in natural and industrial environments. Exposure to Cd can lead to various metabolic disturbances, notably disrupting glucose and lipid homeostasis. Despite this recognition, the direct impact of Cd exposure on lipid metabolism within adipose tissue, and the mechanisms underlying these effects, have not been fully elucidated. In this study, we found that Cd accumulates in adipose tissues of mice subjected to Cd exposure. Intriguingly, Cd exposure in itself did not induce significant alterations in the adipose tissue under normal conditions. However, when subjected to cold stimulation, several notable changes were observed in the mice exposed to Cd, including a reduction in the drop of body temperature, a decrease in the size of inguinal white adipose tissue (WAT), and an increase in the expression of thermogenic genes UCP1 and PRDM16. These results indicate that Cd exposure might enhance the responsiveness of adipose tissue to external stimuli and increase the energy expenditure of the tissue. RNA-seq analysis further revealed that Cd exposure altered gene expression profiles, particularly affecting peroxisome proliferator-activated receptor (PPAR)-mediated metabolic pathways, promoting metabolic remodeling in adipose tissue and resulting in the depletion of lipids stored in adipose tissue for energy. Non-targeted metabolomic analysis of mouse serum showed that Cd exposure significantly disrupted metabolites and significantly increased serum fatty acid and triglyceride levels. Correspondingly, population-level data confirmed an association between Cd exposure and elevated levels of serum total cholesterol, total triglycerides, and low-density lipoprotein cholesterol. In summary, we provide substantial evidence of the molecular events induced by Cd that are relevant to the regulation of lipid metabolism in adipose tissue. Our findings suggest that the toxic effects of Cd can impact adipocyte functionality, positioning adipose tissue as a critical target for metabolic diseases resulting from Cd exposure.


Subject(s)
Adipose Tissue, Brown , Cadmium , Mice , Animals , Cadmium/toxicity , Cadmium/metabolism , Adipose Tissue, Brown/metabolism , Transcriptome , Adipose Tissue , Gene Expression Profiling , Cholesterol
17.
Int J Immunopathol Pharmacol ; 38: 3946320241227320, 2024.
Article in English | MEDLINE | ID: mdl-38248871

ABSTRACT

Background: Clear cell renal cell carcinoma (ccRCC) is the most invasive type of cancer, with a high risk of metastasis and recurrence. Therefore, there is an urgent need to identify novel prognostic predictors and therapeutic targets of ccRCC. Activating transcription factor 3 (ATF3), a tumor oncogene or repressor, has rarely been examined in ccRCC. In the present study, we comprehensively elucidate the prognostic value and potential functions of ATF3 in ccRCC.Methods: Several TCGA-based online databases were used to analyze ATF3 expression in ccRCC and determine ccRCC prognosis. The upstream-binding micro (mi) RNAs of ATF3 and long non-coding (lnc)RNAs were predicted using the StarBase database.Results: Analysis of several TCGA-based online databases showed that ATF3 expression is decreased in ccRCC, suggesting a significant association with the prognosis of patients with ccRCC. Furthermore, we found hsa-miR-221-3p to be potential regulatory miRNA of ATF3 in ccRCC. Prediction and analysis of the upstream lncRNAs indicated that PAXIP1-AS2 and OIP5-AS1 were the most potent upstream lncRNAs of the hsa-miR-221-3p/ATF3 axis in ccRCC. The results of the GO and KEGG analyses implied that ATF3 is likely involved in the regulation of apoptotic signaling in response to endoplasmic reticulum (ER) stress in ccRCC. Correlation analysis revealed a positive relationship between ATF3 expression and ER stress.Conclusions: Our in silico findings highlighted that ATF3 expression was low in ccRCC and negatively correlated with poor prognosis. Furthermore, PAXIP1-AS2 and the OIP5-AS1/hsa-miR-221-3p/ATF3 axis were identified as significant potential regulators of ER stress-mediated apoptosis in ccRCC.


Subject(s)
Activating Transcription Factor 3 , Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Activating Transcription Factor 3/genetics , Biomarkers , Carcinoma , Carcinoma, Renal Cell/diagnosis , Carcinoma, Renal Cell/genetics , Kidney Neoplasms/diagnosis , Kidney Neoplasms/genetics , MicroRNAs/genetics , RNA, Long Noncoding/genetics
18.
BMC Palliat Care ; 23(1): 24, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38273273

ABSTRACT

OBJECTIVE: This study aims to investigate the experiences of parents who have experienced bereavement in their efforts to preserve memories of their deceased child. METHODS: Employing a qualitative meta-synthesis approach, this study systematically sought relevant qualitative literature by conducting searches across various electronic databases, including PubMed, Embase, CINAHL, PsycINFO, Web of Science, Cochrane Library, and Wiley, up until July 2023. RESULTS: Nine studies are eligible for inclusion and included in the meta-synthesis. Three overarching categories are identified: (1) Affirming the Significance of Memory Making. (2) Best Practices in Memory Making. (3) Barriers to Effective Memory Making. CONCLUSION: Bereaved parents highly value the act of creating lasting memories, emphasizing its profound significance. While forming these memories, it is imperative to offer family-centered care and honor diverse preferences and needs. It is essential to offer effective support to parents, offering them a range of choices. Furthermore, a more comprehensive examination of memory-making practices is required to better understand their influence on parents' recollections of their deceased child.


Subject(s)
Bereavement , Child , Humans , Grief , Parents , Qualitative Research
19.
J Biopharm Stat ; 34(3): 441-452, 2024 May.
Article in English | MEDLINE | ID: mdl-37330676

ABSTRACT

An in vitro diagnostic device (IVD) that is essential for the safe and effective use of a corresponding therapeutic product is commonly referred to as companion diagnostic device. Clinical trials using companion diagnostic devices (tests) together with therapies can yield the information necessary to address whether both products are safe and effective. A clinical trial ideally assesses safety and effectiveness of a therapy, where the clinical trial enrolls subjects based on the final market ready companion diagnostic test (CDx). However, such a requirement may be difficult to accomplish or impractical to achieve at the time of the clinical trial enrollment, due to unavailability of the CDx. Instead, clinical trial assay(s) (CTA), which are not the final marketable product, are often used in enrollment of patients in a clinical trial. When CTA is used for subject enrollment, a clinical bridging study provides a mechanism to bridge the clinical efficacy of the therapeutic product from CTA to CDx. This manuscript reviews some issues and challenges commonly associated with clinical bridging studies, including missing data, use of local tests for enrollment, prescreening before enrollment, and evaluation of CDx for low positive rate biomarkers, with particular focus on clinical trials using a binary endpoint and provide alternative statistical methodologies to assess effectiveness of CDx.


Subject(s)
Precision Medicine , Humans , Biomarkers , Precision Medicine/methods , Treatment Outcome
20.
Arch Toxicol ; 98(2): 395-408, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38103071

ABSTRACT

Artificial light at night (ALAN) pollution has been regarded as a global environmental concern. More than 80% of the global population is exposed to light pollution. Exacerbating this issue, artificially lit outdoor areas are growing by 2.2% per year, while continuously lit areas have brightened by 2.2% each year due to rapid population growth and expanding urbanization. Furthermore, the increasing prevalence of night shift work and smart device usage contributes to the inescapable influence of ALAN. Studies have shown that ALAN can disrupt endogenous biological clocks, resulting in a disturbance of the circadian rhythm, which ultimately affects various physiological functions. Up until now, scholars have studied various disease mechanisms caused by ALAN that may be related to the response of the circadian system to light. This review outlines the molecular mechanisms by which ALAN causes circadian rhythm abnormalities in sleep disorders, endocrine diseases, cardiovascular disease, cancer, immune impairment, depression, anxiety and cognitive impairments.


Subject(s)
Light Pollution , Shift Work Schedule , Lighting/adverse effects , Circadian Rhythm/physiology , Environmental Pollution
SELECTION OF CITATIONS
SEARCH DETAIL
...