Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 761: 144191, 2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33352343

ABSTRACT

Activated, oxidized, and solvent-extracted black carbon samples (BCs) were produced from a shale kerogen at temperatures ranging from 250 to 500 °C by chemical activation regents (KOH, ZnCl2), oxidative regents (H2O2, NaClO), and organic solvents, respectively. Extracted organic matter (EOM) and polycyclic aromatic hydrocarbons (PAHs) were quantified in BCs, and they increased and then decreased with increasing temperature. Sorption and desorption isotherms of nonylphenol (NP) on BCs were compared with those previously reported for phenanthrene (Phen). The desorption hysteresis coefficients of NP were greater than those of Phen, while the adsorption capacities of NP were different from those of Phen. The micropore volume and micropore size were critical factors for the micropore filling mechanism of NP in BCs. The ZnCl2 activation and oxidation treatments were observed to effectively enhance the adsorption of NP and to remove native PAHs from the investigated BCs. But the KOH activation and oxidation treatments were not as efficient as expected. Moreover, the NP desorption hysteresis suggested that a hydrogen bonding and micropore deformation mechanism occurred on the extracted activated BCs. This finding improves our understanding of the sorption and desorption mechanisms of NP from the perspective of the modified BCs and their applications.

2.
Environ Pollut ; 260: 114034, 2020 May.
Article in English | MEDLINE | ID: mdl-32014746

ABSTRACT

The demineralized fraction (DM), lipid-free fraction (LF), nonhydrolyzable organic carbon fraction (NHC), and black carbon (BC) were isolated from five marine surface sediments, and they were characterized by elemental analysis as well as CO2 and N2 adsorption techniques, respectively. The NHC fractions were characterized using advanced solid-state 13C nuclear magnetic resonance (NMR) and x-ray photoelectron spectroscopy (XPS). Then, the sorption isotherms of phenanthrene (Phen) and nonylphenol (NP) on all of the samples were investigated by a batch technique. The CO2 micropore volumes were corrected for the outer specific surface areas (SSAs) by using the N2-SSA. Significant correlations between the micropore-filling volumes of Phen and NP and the micropore volumes suggested that the micropore-filling mechanism dominated the Phen and NP sorption. Meanwhile, the (O + N)/C atomic ratios were negatively and significantly correlated with the sorption capacities of Phen and NP, indicating that the sedimentary organic matter (SOM) polarity also played a significant role in the sorption process. In addition, a strong linear correlation was demonstrated between the aromatic C and the sorption capacity of Phen for the NHC fractions. This study demonstrates the importance of the micropores, polarity, and aromaticity on the sorption processes of Phen and NP in the sediments.


Subject(s)
Phenanthrenes/chemistry , Phenols/chemistry , Adsorption , Geologic Sediments
3.
Environ Sci Technol ; 53(24): 14285-14295, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31578063

ABSTRACT

Although spores/pollens are so abundant and ubiquitous in the environment, the role of these natural organic matter concerning fate and transport of organic pollutants in the environment is neglected. Lipid-free fractions and sporopollenins were isolated from seven spores/pollens collected from lower and higher biota species and were characterized by elemental analysis, CO2 adsorption techniques, and advanced solid-state 13C nuclear magnetic resonance spectroscopy. Then, the sorption isotherms of phenanthrene (Phen) on all the samples were investigated by a batch technique. The sporopollenins were a highly cross-linked polymer including alkyl carbon, poly(methylene) carbon, and aromatic carbon as well as oxygen functionalities; additionally, their sorption capacities (Koc) for Phen reached up to 1 170 000 mL/g, suggesting that some of the sporopollenins were good biopolymeric sorbents for the removal of hydrophobic organic contaminants in aquatic media. A highly significant and positive correlation between the sorption capacity of Phen and the aliphaticity of the sporopollenins suggested that their structure was critical to Phen sorption. Meanwhile, the (O + N)/C atomic ratios and polar groups were significantly and negatively correlated with the sorption capacity of Phen, indicating that accessibility also played a significant role in the sorption process. Moreover, variable correlations between the sorption capacities (Koc) and the micropore volumes of the spore/pollen fractions were observed. This study sheds light on the importance of the polarity, microporosity, and structure of sporopollenins in the sorption process of Phen.


Subject(s)
Phenanthrenes , Adsorption , Biopolymers , Biota , Carotenoids , Pollen , Spores
4.
Dalton Trans ; 46(19): 6187-6195, 2017 May 16.
Article in English | MEDLINE | ID: mdl-28426082

ABSTRACT

A high mobility group box 1 (HMGB1) protein has been reported to recognize both 1,2-intrastrand crosslinked DNA by cisplatin (1,2-cis-Pt-DNA) and monofunctional platinated DNA using trans-[PtCl2(NH3)(thiazole)] (1-trans-PtTz-DNA). However, the molecular basis of recognition between the trans-PtTz-DNA and HMGB1 remains unclear. In the present work, we described a hydrogen/deuterium exchange mass spectrometry (HDX-MS) method in combination with docking simulation to decipher the interactions of platinated DNA with domain A of HMGB1. The global deuterium uptake results indicated that 1-trans-PtTz-DNA bound to HMGB1a slightly tighter than the 1,2-cis-Pt-DNA. The local deuterium uptake at the peptide level revealed that the helices I and II, and loop 1 of HMGB1a were involved in the interactions with both platinated DNA adducts. However, docking simulation disclosed different H-bonding networks and distinct DNA-backbone orientations in the two Pt-DNA-HMGB1a complexes. Moreover, the Phe37 residue of HMGB1a was shown to play a key role in the recognition between HMGB1a and the platinated DNAs. In the cis-Pt-DNA-HMGB1a complex, the phenyl ring of Phe37 intercalates into a hydrophobic notch created by the two platinated guanines, while in the trans-PtTz-DNA-HMGB1a complex the phenyl ring appears to intercalate into a hydrophobic crevice formed by the platinated guanine and the opposite adenine in the complementary strand, forming a penta-layer π-π stacking associated with the adjacent thymine and the thiazole ligand. This work demonstrates that HDX-MS associated with docking simulation is a powerful tool to elucidate the interactions between platinated DNAs and proteins.

SELECTION OF CITATIONS
SEARCH DETAIL
...