Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Saudi Pharm J ; 32(4): 101991, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38414783

ABSTRACT

Nowadays, NPS abuse are continuing to expand in terms of harm and scope, due to its cheap and easy to manufacture anywhere in the world. This study reviewed articles related to seven heavily abused NPS to analyze the structure and trends of NPS abuse. A total of 2476 articles were retrieved based on the search strategy for bibliometric analysis. A significant trend of research in recent years was the increasing number of research on synthetic opioids and designer benzodiazepines, but synthetic cannabinoid and synthetic cathinone still dominate, which were mainly concerned with the development of metabolic models and determining methods as well as their abuse characteristics and reasons. However, with the introduction of class-wide ban on synthetic cannabinoid in China and a series of enhancements in other countries, the abuse of it might decrease to some extent, but more than 20 kinds of synthetic cannabinoid beyond the scope of ban in China still reminded researchers of their potential threats. As for synthetic cathinone, an important phenomenon was some of the drugs first identified during certain period might be more widely distributed in the future. Besides, several problems such as the regulation and prevention mode of emerging NPS, development of testing technologies as well as the interpretation and identification of multiple NPS combinations were also worth paying attention to. This study could help entrants better understand the structure of NPS abuse and provided direction for future research in forensic toxicology.

2.
Fa Yi Xue Za Zhi ; 39(2): 151-160, 2023 Apr 25.
Article in English, Chinese | MEDLINE | ID: mdl-37277378

ABSTRACT

OBJECTIVES: To establish an LC-MS/MS method based on single hair micro-segmental technique, and verify the detection of 42 psychoactive substances in 0.4 mm hair segments. METHODS: Each piece of single hair was cut into 0.4 mm segments and extracted by sonication and the segments were immersed in dithiothreitol-containing extraction medium. Mobile phase A was the aqueous solution containing 20 mmol/L ammonium acetate, 0.1% formic acid, and 5% acetonitrile. Mobile phase B was acetonitrile. An electrospray ionization source in positive ion mode was used for data acquisition in multiple reaction monitoring (MRM) mode. RESULTS: The 42 psychoactive substances in hair had a good linear relationship within their respective linear ranges (r>0.99), the limits of detection were 0.2-10 pg/mm, the limits of quantification were 0.5-20 pg/mm, the intra-day and inter-day precisions were 1.5%-12.7%, the intra-day and inter-day accuracies were 86.5%-109.2%, the recovery rates were 68.1%-98.2%, and the matrix effects were 71.3%-111.7%. The method was applied to hair samples collected from one volunteer at 28 d after a single dose of zolpidem, with zolpidem detected in 5 hairs was 1.08-1.60 cm near the root tip, and the concentration range was 0.62-20.5 pg/mm. CONCLUSIONS: The micro-segmental technique of single hair analysis can be applied to the investigation of drug-facilitated sexual assault cases.


Subject(s)
Hair , Tandem Mass Spectrometry , Humans , Chromatography, Liquid/methods , Zolpidem , Tandem Mass Spectrometry/methods , Acetonitriles , Chromatography, High Pressure Liquid
3.
J Anal Toxicol ; 44(9): 1012-1026, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-32020177

ABSTRACT

MDMB-CHMINACA is a newly synthetic cannabinoid, which scoped in NMS Lab, USA. Since there are currently no published data on MDMB-CHMINACA metabolism, we aimed to identify its biotransformation pathways and major metabolites. Liquid chromatography Q-exactive HF hybrid quadrupole-orbitrap mass spectrometry (LC-QE-HF-MS) using full scan positive ion mode and targeted MS-MS (ddms2) techniques with accurate mass measurement were employed to analyze the metabolic sites and pathways. An in vivo metabolic animal model of zebrafish was established to verify the metabolic pathways of MDMB-CHMINACA obtained from human liver microsomal experiment in vitro. The results showed that 29 metabolites were generated in the zebrafish animal model and human liver microsomes model. Biotransformations mainly occurred at the cyclohexylmethyl tail of the compound, minor reactions also occurred at the tert-butyl chain and no reaction was analyzed at the indazole ring. We recommend M1 group (MDMB-CHMINACA ester hydroxylation) and M2 group (MDMB-CHMINACA monohydroxylation) as the potential poisoning markers to document MDMB-CHMINACA intake in clinical and forensic cases. Additionally, this study provides preliminary information regarding the metabolism of MDMB-CHMINACA that will guide analytical standard manufacturers to better provide suitable references for further studies on newly encountered designer drugs.


Subject(s)
Cannabinoids/analysis , Substance Abuse Detection/methods , Zebrafish/metabolism , Animals , Biotransformation , Cannabinoids/metabolism , Chromatography, Liquid , Humans , Hydroxylation , Illicit Drugs , Indazoles , Metabolic Networks and Pathways , Microsomes, Liver/metabolism , Synthetic Drugs/analysis , Synthetic Drugs/metabolism , Tandem Mass Spectrometry
4.
Front Chem ; 7: 240, 2019.
Article in English | MEDLINE | ID: mdl-31041306

ABSTRACT

In this study, the metabolic profiles of a new illicit drug AMB-FUBINACA were investigated using both human liver microsome and zebrafish models. Liquid chromatography Q Extractive HF Hybrid Quadrupole-Orbitrap mass spectrometry (LC-QE-HF-MS) was employed to analyze the metabolic sites and pathways. AMB-FUBINACA was added to the in vitro liver microsome incubation model to simulate the metabolic processes in human body. The results showed that a total of 17 metabolites were generated in the human liver microsome model; the main metabolic pathways of the phase I metabolism included ester hydrolysis, methylation, ester hydrolysis combined with decarboxylation, hydroxylation, ester hydrolysis combined with indazole ring hydroxylation, etc. while glucuronidation served as the main metabolic pathway of the phase II metabolism. The zebrafish system produced a similar result with 16 of the same 17 metabolites identified. The phase I metabolites M3.1 (ester hydrolysis), M1.2 (alkyl chain hydrolysis) and the phase II metabolite M3.2 (M3.1 glucuronide) were recommended to be the potential poisoning markers.

SELECTION OF CITATIONS
SEARCH DETAIL
...