Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Chem Biol Interact ; 399: 111119, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936533

ABSTRACT

Hepatic stellate cells (HSCs) are a major source of fibrogenic cells and play a central role in liver fibrogenesis. HSC activation depends on metabolic activation, for which it is well established that fatty acid oxidation (FAO) sustains their rapid proliferative rate. Studies have indicated that tanshinones inhibit HSC activation, however, the anti-fibrosis mechanisms of tanshinones are remain unclear. Herein, we reported that cryptotanshinone (CTS), a lipid-soluble ingredient of Salvia miltiorrhiza Bunge, exhibited the strongest inhibitory effects on HSC-LX2 proliferation and activation. CTS could induce lipocyte phenotype in mouse primary HSC and HSC-LX2. Transcriptomic sequencing and qPCR revealed that CTS regulated fatty acid metabolism and inhibited CPT1A and CPT1B expression. Target prediction suggested CTS regulates lipid metabolism by targeting STAT3. Mechanistically, the level of ATP and acetyl-CoA were reduced by the treatment of CTS, indicating that CTS could inhibit the level of FAO. Furthermore, CTS could inhibit the phosphorylation and nuclear translocation of STAT3. Additionally, CPT1A overexpression reversed the efficacy of CTS. Finally, CTS (40 mg/kg/day) attenuated CCl4-induced liver fibrosis and inhibited collagen production and HSC activation. Moreover, the results of immunofluorescence showed that α-SMA and p-STAT3 were co-located, and CTS could reduce the levels of p-STAT3 and α-SMA. In summary, CTS alleviated liver fibrosis by inhibiting the p-STAT3/CPT1A-dependent FAO both in vitro and in vivo, making it a potential candidate drug for the treatment of liver fibrosis.

2.
Exp Gerontol ; 192: 112451, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729250

ABSTRACT

The NLRP3 inflammasome is critically involved in the development of depression. The E3 ubiquitin ligase TRIM31 negatively regulates this process by promoting the degradation of NLRP3 through the ubiquitin-proteasome pathway. Modified Danzhi Xiaoyaosan (MDZXYS) has shown good therapeutic effect in both preclinical and clinical depression treatments, yet the underlying mechanisms of its antidepressant effects are not fully understood. In the present study, we aimed to explore the antidepressant mechanisms of MDZXYS, focusing on NLRP3 activation and ubiquitin-mediated degradation. We employed rats with depression induced by chronic unpredictable mild stress (CUMS) and conducted various behavioral tests, including the sucrose preference, forced swimming, and open field tests. Neuronal damage in CUMS-treated rats was assessed using Nissl staining. We measured proinflammatory cytokine levels using ELISA kits and analyzed NLRP3/TRIM31 protein expression via Western blotting and immunofluorescence staining. Our results disclosed that MDZXYS reversed CUMS-induced depression-like behaviors in rats, reduced proinflammatory cytokine levels (IL-1ß), and ameliorated neuronal damage in the prefrontal cortex. Additionally, CUMS activated the NLRP3 inflammasome in the prefrontal cortex and upregulated the protein expression of TRIM31. After MDZXYS administration, the expression of NLRP3 inflammasome-associated proteins was reduced, while the expression level of TRIM31 was further increased. Through co-localized immunofluorescence staining, we observed a significant elevation in the co-localization expression of NLRP3 and TRIM31 in the prefrontal cortex of the MDZXYS group. These findings suggest that inhibiting NLRP3 inflammasome-mediated neuroinflammation by modulating the TRIM31signaling pathway may underlie the antidepressant effects of MDZXYS, and further support targeting NLRP3 as a novel approach for the prevention and treatment of depression.


Subject(s)
Antidepressive Agents , Depression , Drugs, Chinese Herbal , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Rats, Sprague-Dawley , Stress, Psychological , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Ubiquitin-Protein Ligases/metabolism , Tripartite Motif Proteins/metabolism , Male , Inflammasomes/metabolism , Inflammasomes/drug effects , Depression/drug therapy , Depression/metabolism , Rats , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Stress, Psychological/complications , Stress, Psychological/drug therapy , Disease Models, Animal , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Behavior, Animal/drug effects
3.
Inflamm Res ; 73(6): 945-960, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38587532

ABSTRACT

OBJECTIVE AND DESIGN: Mast cells (MCs), as the fastest immune responders, play a critical role in the progression of neuroinflammation-related diseases, especially in depression. Quercetin (Que) and kaempferol (Kae), as two major diet-derived flavonoids, inhibit MC activation and exhibit significant antidepressant effect due to their anti-inflammatory capacity. The study aimed to explore the mechanisms of inhibitory effect of Que and Kae on MC activation, and whether Que and Kae suppress hippocampal mast cell activation in LPS-induced depressive mice. SUBJECTS AND TREATMENT: In vitro assays, human mast cells (HMC-1) were pretreated with Que or Kae for 1 h, then stimulated by phorbol 12-myristate 13-acetate (PMA) and 2,5-di-t-butyl-1,4-benzohydroquinone (tBHQ) for 3 h or 12 h. In vivo assays, Que or Kae was administered by oral gavage once daily for 14 days and then lipopolysaccharide (LPS) intraperitoneally injection to induce depressive behaviors. METHODS: The secretion and expression of TNF-α were determined by ELISA and Western blotting. The nuclear factor of activated T cells (NFAT) transcriptional activity was measured in HMC-1 stably expressing NFAT luciferase reporter gene. Nuclear translocation of NFATc2 was detected by nuclear protein extraction and also was fluorescently detected in HMC-1 stably expressing eGFP-NFATc2. We used Ca2+ imaging to evaluate changes of store-operated calcium entry (SOCE) in HMC-1 stably expressing fluorescent Ca2+ indicator jGCamP7s. Molecular docking was used to assess interaction between the Que or Kae and calcium release-activated calcium modulator (ORAI). The  hippocampal mast cell accumulation and activation  were detected by toluidine blue staining and immunohistochemistry with ß-tryptase. RESULTS: In vitro assays of HMC-1 activated by PtBHQ (PMA and tBHQ), Que and Kae significantly decreased expression and secretion of TNF-α. Moreover, NFAT transcriptional activity and nuclear translocation of NFATc2 were remarkably inhibited by Que and Kae. In addition, the Ca2+ influx mediated by SOCE was suppressed by Que, Kae and the YM58483 (ORAI inhibitor), respectively. Importantly, the combination of YM58483 with Que or Kae had no additive effect on the inhibition of SOCE. The molecular docking also showed that Que and Kae both exhibit high binding affinities with ORAI at the same binding site as YM58483. In vivo assays, Que and Kae significantly reversed LPS-induced depression-like behaviors in mice, and inhibited hippocampal mast cell activation  in LPS-induced depressive mice. CONCLUSIONS: Our results indicated that suppression of SOCE/NFATc2 pathway-mediated by ORAI channels may be the mechanism of inhibitory effect of Que and Kae on MC activation, and also suggested Que and Kae may exert the antidepressant effect through suppressing hippocampal mast cell activation.


Subject(s)
Depression , Hippocampus , Kaempferols , Lipopolysaccharides , Mast Cells , NFATC Transcription Factors , Quercetin , Animals , Mast Cells/drug effects , Mast Cells/metabolism , NFATC Transcription Factors/metabolism , Kaempferols/pharmacology , Kaempferols/therapeutic use , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Male , Quercetin/pharmacology , Quercetin/therapeutic use , Depression/chemically induced , Depression/drug therapy , Depression/metabolism , Cell Line , Signal Transduction/drug effects , Mice , Calcium/metabolism , Calcium Channels/metabolism , Mice, Inbred C57BL , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use
4.
J Ethnopharmacol ; 325: 117768, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38253275

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Atherosclerosis (AS), a lipid-induced inflammatory condition of the arteries, is a primary contributor to atherosclerotic cardiovascular diseases including stroke. Arctium lappa L. leaf (ALL), an edible and medicinal herb in China, has been documented and commonly used for treating stroke since the ancient times. However, the elucidations on its anti-AS effects and molecular mechanism remain insufficient. AIM OF THE STUDY: To investigate the AS-ameliorating effects and the underlying mechanism of action of an ethanolic extract of leaves of Arctium lappa L. (ALLE). MATERIALS AND METHODS: ALLE was reflux extracted using with 70% ethanol. An HPLC method was established to monitor the quality of ALLE. High fat diet (HFD) and vitamin D3-induced experimental AS in rats were used to determine the in vivo effects; and oxidized low-density lipoprotein-induced RAW264.7 macrophage foam cells were used for in vitro assays. Simvatatin was used as positive control. Biochemical assays were implemented to ascertain the secretions of lipids and pro-inflammatory mediators. Haematoxylin-eosin (H&E) and Oil red O stains were employed to assess histopathological alterations and lipid accumulation conditions, respectively. CCK-8 assays were used to measure cytotoxicity. Immunoblotting assay was conducted to measure protein levels. RESULTS: ALLE treatment significantly ameliorated lipid deposition and histological abnormalities of aortas and livers in AS rats; improved the imbalances of serum lipids including total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C); notably attenuated serum concentrations of inflammation-associated cytokines/molecules including TNF-α, IL-6, IL-1ß, VCAM-1, ICAM-1and MMP-9. Mechanistic studies demonstrated that ALLE suppressed the phosphorylation/activation of PI3K, Akt and NF-κB in AS rat aortas and in cultured foam cells. Additionally, the PI3K agonist 740Y-P notably reversed the in vitro inhibitory effects of ALLE on lipid deposition, productions of TC, TNF-α and IL-6, and protein levels of molecules of PI3K/Akt and NF-κB singnaling pathways. CONCLUSIONS: ALLE ameliorates HFD- and vitamin D3-induced experimental AS by modulating lipid metabolism and inflammatory responses, and underlying mechanisms involves inhibition of the PI3K/Akt and NF-κB singnaling pathways. The findings of this study provide scientific justifications for the traditional application of ALL in managing atherosclerotic diseases.


Subject(s)
Arctium , Atherosclerosis , Peptide Fragments , Receptors, Platelet-Derived Growth Factor , Stroke , Rats , Animals , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Phosphatidylinositol 3-Kinases/metabolism , Lipid Metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Atherosclerosis/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Lipids , Cholesterol/pharmacology , Ethanol/pharmacology , Lipoproteins, LDL/metabolism , Cholecalciferol/pharmacology , Cholecalciferol/therapeutic use
6.
J Ethnopharmacol ; 319(Pt 3): 117373, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37923253

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese herb, Sargentodoxa cuneata, is primarily utilized as a crucial herb for managing ulcerative colitis (UC), also known as "Da Xue Teng (DXT)" or "Hong Teng" in Chinese. Nevertheless, the chemical composition, prototype, and metabolite constituents of DXT and its pharmacological mechanism of treatment for UC remain unclear. AIM OF THE STUDY: Necroptosis, a caspase-independent form of programmed cell death, plays a crucial role in the inflammatory pathogenesis of UC. The occurrence of necroptosis in intestinal epithelial cells triggers a robust inflammatory response and disrupts the integrity of both the mucinous barrier and tight junction construction. The objective of our study was to determine the chemical composition of DXT, identify its absorbed active ingredients and metabolites in rat serum, and investigate whether DXT possesses epithelial barrier protective effects by inhibiting necroptosis. MATERIALS AND METHODS: First, the UPLC-Q-TOF/MS was applied to identify the chemical composition of DXT, as well as the absorption components and metabolites of DXT in rat serum. Second, the network pharmacology analysis was further investigated to elucidate the potential targets for treating UC. Finally, the mechanism of action was validated by necroptosis-based experiment in vitro and an in vivo model of colitis. RESULTS: A comprehensive analysis revealed the presence of 31 phytochemicals derived from DXT herb, as well as a total of 39 components in rat serum. Network pharmacology analysis indicated that TNF, EGFR, HSP90, etc. are the potential targets. Experimental in vitro and in vivo verified that the DXT could improve disease activity index, body weight, colon length and intestinal barrier permeability in mice with colitis by inhibiting necroptosis of intestinal epithelial cells. CONCLUSIONS: In this study, the phytochemicals derived from DXT herb and absorption active ingredients and metabolites of DXT in rat serum were analyzed. The biological mechanism of treatment for UC can be elucidated by combining network pharmacology investigation with experimental in vitro and in vivo studies. The findings offered a theoretical basis for comprehending the bioactive substances and the pharmacological process of DXT.


Subject(s)
Colitis, Ulcerative , Colitis , Mice , Rats , Animals , Necroptosis , Colitis/chemically induced , Colitis/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Apoptosis
7.
J Ethnopharmacol ; 315: 116659, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37263314

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Modified Xiaoyao San (MXYS), a clinical empirical modified formula based on famous traditional Chinese herbal prescription Xiaoyao San, according to the "yu syndrome" theory of traditional Chinese medicine. MXYS has been shown to be an excellent effective therapy for depression patients in clinic, but the antidepressant mechanisms remain unclear. AIM OF THE STUDY: A growing body of evidence indicates the microglia autophagy and M1 polarized microglia (proinflammatory phenotype)-mediated neuroinflammation act critical roles in the pathogenesis of depression. This study aimed to investigate whether MXYS exerts antidepressant efficacy through inhibition of M1 polarized microglia-mediated neuroinflammation and modulation of autophagy involved in PI3K/Akt/mTOR pathway. MATERIALS AND METHODS: In present research, the lipopolysaccharide (LPS)-induced depressive mice and LPS-stimulated N9 microglia cell line were utilized. Behavioral tests (sucrose preference, tail suspension and open field tests) were carried out to evaluate the antidepressant effect of MXYS. The neuronal damage was measured by Nissl's staining in LPS-treated mice. The proinflammatory cytokine levels, the autophagic markers, microglia M1 polarization as well as the PI3K/Akt/mTOR pathway related proteins of MXYS treatment were analyzed by ELISA kits, Western blot and immunofluorescence staining in vivo and vitro. Finally, the influence of autophagy antagonist (3-MA) on the protective effect of MXYS-containing serum in the LPS-stimulated N9 microglia was investigated. RESULTS: Treatment of LPS-induced depressive mice with MXYS significantly reversed depression-like behaviors, accompanied by reduction of proinflammatory cytokine levels (TNF-α, IL-1ß) and amelioration of neuronal damage in prefrontal cortex. MXYS suppressed microglia M1 polarization and promoted autophagy in prefrontal cortex and LPS-stimulated N9 cells. Importantly, the remarkable inhibitory effect of the MXYS-medicated serum on microglia M1 polarization was blocked by autophagy antagonist 3-MA in LPS-stimulated N9 cells. Meanwhile, the MXYS treatment exhibited an excellent inhibition effect of PI3K/Akt/mTOR pathway in vivo and vitro. CONCLUSION: Our research suggests that the antidepressant effect of MXYS in LPS-induced depressive mice may be related to alleviate neuroinflammation through suppression of microglia M1 polarization via enhancing autophagy involved in inactivation of the PI3K/Akt/mTOR pathway.


Subject(s)
Proto-Oncogene Proteins c-akt , Signal Transduction , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Lipopolysaccharides/pharmacology , Microglia , Phosphatidylinositol 3-Kinases/metabolism , Depression/chemically induced , Depression/drug therapy , Neuroinflammatory Diseases , TOR Serine-Threonine Kinases/metabolism , Autophagy , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Antidepressive Agents/metabolism , Cytokines/metabolism
8.
Molecules ; 28(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36903261

ABSTRACT

Cinnamomi ramulus (CR) and Cinnamomi cortex (CC), both sourced from Cinnamomum cassia Presl, are commonly used Chinese medicines in the Chinese Pharmacopeia. However, while CR functions to dissipate cold and to resolve external problems of the body, CC functions to warm the internal organs. To clarify the material basis of these different functions and clinical effects, a simple and reliable UPLC-Orbitrap-Exploris-120-MS/MS method combined with multivariate statistical analyses was established in this study with the aim of exploring the difference in chemical compositions of aqueous extracts of CR and CC. As the results indicated, a total of 58 compounds was identified, including nine flavonoids, 23 phenylpropanoids and phenolic acids, two coumarins, four lignans, four terpenoids, 11 organic acids and five other components. Of these compounds, 26 significant differential compounds were identified statistically including six unique components in CR and four unique components in CC. Additionally, a robust HPLC method combined with hierarchical clustering analysis (HCA) was developed to simultaneously determine the concentrations and differentiating capacities of five major active ingredients in CR and CC: coumarin, cinnamyl alcohol, cinnamic acid, 2-methoxycinnamic acid and cinnamaldehyde. The HCA results showed that these five components could be used as markers for successfully distinguishing CR and CC. Finally, molecular docking analyses were conducted to obtain the affinities between each of the abovementioned 26 differential components, focusing on targets involved in diabetes peripheral neuropathy (DPN). The results indicated that the special and high-concentration components in CR showed high docking scores of affinities with targets such as HbA1c and proteins in the AMPK-PGC1-SIRT3 signaling pathway, suggesting that CR has greater potential than CC for treating DPN.


Subject(s)
Drugs, Chinese Herbal , Tandem Mass Spectrometry , Molecular Docking Simulation , Drugs, Chinese Herbal/chemistry , Cinnamomum zeylanicum
9.
Eur J Pharmacol ; 938: 175435, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36463946

ABSTRACT

Mitochondrial dysfunction has been reported to be involved in the pathogenesis of depression, and mitophagy is a key pathway for mitochondrial quality control. This study aimed to investigate the effect of baicalin on mitophagy in the hippocampus of mice exposed to chronic unpredictable mild stress (CUMS) and explore its potential mechanism. After exposure to CUMS for 6 weeks, mice were given baicalin (20 mg/kg) or fluoxetine (20 mg/kg) by oral gavage for 4 weeks, and HT22 cells were injured by corticosterone (CORT) in vitro. Depression-like behaviors were assessed by sucrose preference test and tail suspension test. The mitochondrial structure was observed by transmission electron microscopy. Detection of mitophagy and mitophagy-related protein by mitophagy kit and Western blot. The results showed that baicalin improved depressive-like behaviors in CUMS mice, and ameliorated mitochondrial structural impairment in the hippocampus neuron. Baicalin significantly down-regulated light chain 3(LC3)II/I, protein sequestosome 1 (P62), and translocase of the outer membrane 20 (TOM20), and up-regulated Nip-like protein (NIX), Adenylate activated protein kinase (AMPK), and Peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α. Furthermore, molecular docking showed that baicalin interacts with AMPK through hydrogen bonding. Baicalin increased NIX and AMPK, and improved mitophagy level and mitochondrial function in HT22 cells. Treatment with Phorbol 12-Myristate 13-acetate demonstrated that up-regulation of NIX ameliorated CORT-induced mitochondrial dysfunction in HT22 cells. In conclusion, the present study suggested that the antidepressant effect of baicalin may be related to the enhancement of NIX-mediated mitophagy through activating the AMPK/PGC-1α pathway by directly binding to AMPK.


Subject(s)
AMP-Activated Protein Kinases , Mitophagy , Mice , Animals , Depression/drug therapy , Molecular Docking Simulation , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Membrane Proteins , Mitochondrial Proteins
10.
Heliyon ; 8(12): e12083, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36531636

ABSTRACT

Depression is gradually becoming a primary mental disease threatening human health. Therefore, there is an urgent need to clarify the pathogenesis of depression and identify new effective natural antidepressants. This study aimed to investigate the antidepressant effects of baicalin and explore its potential mechanism in a mouse model of depression induced by chronic unpredictable mild stress (CUMS). Following a 6-week exposure to CUMS, mice were treated with baicalin (10 mg/kg) or fluoxetine (10 mg/kg) for 4 weeks by oral gavage. A sucrose preference test and a forced swimming test were performed to evaluate depression-like behaviors, and the levels of adenosine triphosphate (ATP) in the prefrontal cortex were measured. Moreover, gene expression and enzyme activities related to ATP production, and mitochondrial function, were monitored. The results indicated that baicalin and fluoxetine could alleviate CUMS-induced depression-like behaviors of mice. In addition, baicalin significantly elevated the ATP content and the expression of genes hexokinase 1 (Hk1), pyruvate dehydrogenase E1 alpha 1 (Pdha-1), isocitrate dehydrogenase (Idh), peroxisome proliferator-activated receptor, gamma, coactivator 1 alpha (Pgc-1α), and sirtuin-1 (Sirt1) in the prefrontal cortex. Furthermore, baicalin increased the activity of the respiratory chain complexes I and V as well as the mitochondrial membrane potential. In conclusion, baicalin may exert its antidepressant effect partly by upregulating the expression of some genes coding for enzymes involved in the glycolysis and the tricarboxylic acid cycle, and improving the mitochondrial function to enhance the ATP level in the brain.

11.
Medicine (Baltimore) ; 101(40): e30817, 2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36221326

ABSTRACT

BACKGROUND: The purpose of this study was to evaluate existing evidence in the field of long non-coding RNAs (lncRNAs) and prognosis of gastric cancer. METHODS: A comprehensive literature search was performed through the electronic database. The combined hazard ratios (HRs) and corresponding 95% confidence intervals (CIs) of overall survival (OS), disease-free survival (DFS), or progression free survival (PFS) were calculated to assess the strength of the association. Kaplan-Meier (KM) plotter was used to verify lncRNA HOX transcript antisense RNA (HOTAIR) expression and OS. RESULTS: Overall, a significant correlation between high lncRNAs expression and poor OS was explored in patients with gastric cancer (HR = 1.78, P < .001). Subgroup analysis based on statistical methods indicated the high expression of lncRNAs in log-rank (HR = 1.87, P < .001) and multivariate analysis (HR = 1.71, P < .001) were all significantly correlated with the poor OS. Clinicopathological parameters analysis showed the lncRNA expression were significantly associated prognosis, including TNM stage, tumor size, pathological differentiation, lymph nodes metastasis, distance metastasis, invasion depth and Lauren's classification. It was consistent with the verification results of bioinformatics database for lncRNA HOTAIR (P < .001). CONCLUSION: Our study confirmed the expression of lncRNAs and clinicopathological features may serve as effective indicators of prognosis in patients with gastric cancer.


Subject(s)
RNA, Long Noncoding , Stomach Neoplasms , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Humans , Prognosis , RNA, Antisense , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Stomach Neoplasms/genetics
12.
Medicine (Baltimore) ; 101(38): e30833, 2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36197192

ABSTRACT

BACKGROUND: Actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1) is associated with prognosis in many cancers. The aim of this study was to systematically evaluate the potential correlation between AFAP1-AS1 and the prognosis of digestive system cancers (DSC). METHODS: EMBASE, Web of Science, Cochrane Library, PubMed, Wanfang Data (Chinese), and CNKI (Chinese) were comprehensively searched for literature published from the establishment of the database to September 2021.All case-control studies that met the inclusion criteria were retrieved; additionally manual retrieval and literature tracing was performed. After extracting the relevant data, Revman 5.3.5 software was used for meta-analysis. RESULTS: Eighteen studies were included in analyses, high expression of AFAP1-AS1 was significantly correlated with poor prognosis in DSC, including overall survival (HR = 1.93, 95% CI: 1.72-2.17, P < .001) and disease-free survival/progression-free survival (HR = 1.87, 95% CI: 1.56-2.26, P < .001). In addition, the expression of AFAP1-AS1 was significantly correlated with tumor size, tumor stage, and lymph node metastasis. CONCLUSION: High expression of AFAP1-AS1 was associated with poor prognosis in DSC. Therefore, it could be used as a potential marker for evaluating prognosis in DSC.


Subject(s)
Digestive System Neoplasms , RNA, Long Noncoding , Cell Line, Tumor , Cell Proliferation , Digestive System Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Humans , Prognosis , RNA, Antisense , RNA, Long Noncoding/genetics
13.
Brain Res ; 1783: 147844, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35218705

ABSTRACT

Previous studies reported the neuroprotective effects of formononetin (FMN), however, whether it has antidepressant-like effects have not been reported. To evaluate the antidepressant-like effects of FMN, a mice model of depression was established by chronic corticosterone (CORT) injection. The serum corticosterone levels and hippocampal protein expression were detected by ELISA and Western blot. Nissl staining was used to observe the damage of hippocampal neurons and immunofluorescence was used to observe the neurogenesis in the hippocampus. Our results showed that FMN significantly increased the sucrose preference and shorten the immobility time in the forced swimming test in CORT-treated mice. Moreover, FMN reduced the serum corticosterone levels, upregulated the protein expression levels of the glucocorticoid receptor (GR), and brain-derived neurotrophic factor (BDNF) in the hippocampus, protected against the CORT-induced neuronal impairment, and promoted the neurogenesis in the hippocampus. Taken together, the present study was the first to demonstrate the antidepressant-like effects of FMN in the CORT-induced mice model of depression, which may contribute to the discovery of a new candidate for treating depression.


Subject(s)
Antidepressive Agents , Corticosterone , Isoflavones , Animals , Antidepressive Agents/pharmacology , Behavior, Animal , Brain-Derived Neurotrophic Factor/metabolism , Depression/chemically induced , Depression/drug therapy , Depression/metabolism , Disease Models, Animal , Hippocampus/metabolism , Isoflavones/pharmacology , Mice
14.
Zhongguo Zhong Yao Za Zhi ; 46(17): 4417-4423, 2021 Sep.
Article in Chinese | MEDLINE | ID: mdl-34581045

ABSTRACT

In view of the current inadequate standards for Gleditsiae Spina in the Chinese Pharmacopoeia, this study put forward some new items of the quality standards of Gleditsiae Spina. Thin-layer chromatography(TLC) was performed for identification with the reference substance of taxifolin and the reference material of Gleditsiae Spina as the control. According to the general principles of the Chinese Pharmacopoeia(2020 edition, Vol. 4), the moisture, total ash content, and alcohol-soluble extract of medicinal materials and decoction pieces of Gleditsiae Spina were determined. The content determination method for medicinal materials and decoction pieces of Gleditsiae Spina was established using high-performance liquid chromatography(HPLC), with taxifolin as the quality control index. Based on the determination results of 30 batches of samples of Gleditsiae Spina from different habitats, the draft quality standards of Gleditsiae Spina were developed, which provided suggestions for the revision of the quality standards of Gleditsiae Spina in the Chinese Pharmacopoeia.


Subject(s)
Drugs, Chinese Herbal , Chromatography, High Pressure Liquid , Quality Control , Reference Standards
15.
Zhongguo Zhong Yao Za Zhi ; 46(16): 4061-4068, 2021 Aug.
Article in Chinese | MEDLINE | ID: mdl-34467715

ABSTRACT

Reverse prediction and molecular docking techniques were employed to evaluate the feasibility of reniformin A(RA) as an anti-tumor leading compound. Based on the reverse prediction, network pharmacology was used to construct a "disease-compound-target-pathway" network. Thirty-nine tumor-related targets of RA were predicted, which participated in the regulation of multiple cellular activities such as apoptosis, cell cycle, and tumor metastasis, and regulated estrogen signal transduction and inflammatory response. Discovery Studio 2020 was adopted for molecular docking and toxicity prediction(TOPKAT). As revealed by the results, the binding affinity of RA with the tumor-related targets ABL1, ESR1, SRC and BCL-XL was stronger than that of oridonin(OD), while its mutagenicity, rodent carcinogenesis, and oral LD_(50) in rats were all inferior to that of OD. Furthermore, in vitro experiments were performed to confirm the anti-tumor activity of RA, and the mechanism was preliminarily discussed. The results demonstrated that RA was superior to OD in cytotoxicity, inhibition of cell colony formation, and induction of apoptosis. RA, possessing potent anti-tumor activity, is expected to be a new anti-tumor leading compound.


Subject(s)
Drugs, Chinese Herbal , Neoplasms , Animals , Drugs, Chinese Herbal/pharmacology , Lead , Molecular Docking Simulation , Neoplasms/drug therapy , Neoplasms/genetics , Rats , Signal Transduction
16.
Article in English | MEDLINE | ID: mdl-34479180

ABSTRACT

Depression is a global mental disorder disease and greatly threatened human health. Xiaochaihutang (XCHT) has been used successfully in treatment of depression for many years in China, but the mechanism is unclear. Using the chronic unpredictable mild stress (CUMS) mice model of depression, the present study aimed to reveal possible antidepressant mechanisms of XCHT from the perspective of liver by analyzing hepatic proteomics in mice. Bioinformatics analysis identified 31 differentially expressed proteins (DEPs), including 5 upregulated and 26 downregulated proteins, between the CUMS model and XCHT groups. The bile secretion pathway was found by KEGG pathway analysis of these DEPs. Four of the 31 differentially expressed proteins, including 2 active proteins involved in bile secretion, carbonic anhydrase 2 (CA2) and cystic fibrosis transmembrane conductance regulator (CFTR), were selected to verify their genes. Four genes (Cyp7a1, Fxr, Shp and Ntcp) related to bile acid synthesis and transport were further investigated by quantitative real-time polymerase chain reaction (qRT-PCR). Both biochemical tests and gene studies demonstrated that CUMS affected bile acid synthesis and transport, while XCHT regulated this pathway. The results indicated that there may be a potential relationship between CUMS induced depression and hepatic injury caused by increased bile acid, and also provide a novel insight to understand the underlying anti-depression mechanisms of XCHT.


Subject(s)
Depression/metabolism , Drugs, Chinese Herbal/pharmacology , Liver , Proteome , Stress, Psychological/metabolism , Animals , Bile Acids and Salts/metabolism , Disease Models, Animal , Liver/chemistry , Liver/drug effects , Liver/injuries , Male , Mice, Inbred C57BL , Proteome/analysis , Proteome/chemistry , Proteomics , Tandem Mass Spectrometry/methods
17.
Molecules ; 26(7)2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33805990

ABSTRACT

Four new gallate derivatives-ornusgallate A, ent-cornusgallate A, cornusgallate B and C (1a, 1b, 2, 3)-were isolated from the wine-processed fruit of Cornus officinalis. Among them, 1a and 1b are new natural compounds with novel skeletons. Their chemical structures were elucidated by comprehensive spectroscopy methods including NMR, IR, HRESIMS, UV, ECD spectra and single-crystal X-ray diffraction analysis. The in vitro anti-inflammatory activities of all compounds were assayed in RAW 264.7 cells by assessing LPS-induced NO production. As the result, all compounds exhibited anti-inflammatory activities at attested concentrations. Among the tested compounds, compound 2 exhibited the strongest anti- inflammatory activity.


Subject(s)
Anti-Inflammatory Agents , Cornus/chemistry , Fruit/chemistry , Gallic Acid , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Gallic Acid/analogs & derivatives , Gallic Acid/chemistry , Gallic Acid/isolation & purification , Gallic Acid/pharmacology , Lipopolysaccharides/toxicity , Mice , Nitric Oxide/metabolism , RAW 264.7 Cells
18.
Biomed Pharmacother ; 130: 110565, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32745909

ABSTRACT

In traditional Chinese medicine, the role of the liver in depression is highly valued, and liver-relieving drugs, such as Sinisan, are often used to treat depression; however, the mechanism whereby these drugs work remains unclear. The present study aimed to reveal possible antidepressant mechanisms of Sinisan (SNS) by analyzing hepatic proteomics in chronic unpredictable mild stress (CUMS) mice. Using the CUMS mouse model of depression, the antidepressant effects of SNS were assessed by the sucrose preference test (SPT) and forced swimming test (FST). Hepatic differentially expressed proteins (DEPs) after SNS treatment were investigated by tandem mass tag (TMT) based quantitative proteomics analysis. Then, a bioinformatics analysis of DEPs was conducted through hierarchical clustering, Venn analysis, Gene Ontology (GO) annotation enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. DEP genes were further validated by quantitative real-time polymerase chain reaction (qRT-PCR) analysis and western blotting. Behavioral results demonstrated that SNS significantly increased sucrose intake in SPT and shortened the immobility time in FST in model mice. Eighty-two DEPs were identified, including 37 upregulated and 45 downregulated proteins, between model and SNS groups. Enrichment analysis of GO annotations indicated that SNS primarily maintained cellular iron ion homeostasis by iron ion transportation and regulated expression of some extracellular structural proteins for oxidation-reduction processes. KEGG and Venn analysis showed that mineral absorption, steroid hormone biosynthesis and metabolism might be the principal pathways through which SNS acts on depression. Furthermore, several proteins involved in the biosynthesis and metabolism of steroid hormone pathways were significantly up/downregulated by SNS, including CYP2B19, CYP7B1 (validated by qRT-PCR) and HSD3b5 (validated by qRT-PCR and western blotting). Our results indicate that SNS plays important roles in antidepressant actions by restoring DEPs, resulting in the biosynthesis and metabolism of steroid hormones. The current results provide novel perspectives for revealing potential protein targets of SNS in depression.


Subject(s)
Antidepressive Agents/therapeutic use , Depression/drug therapy , Drugs, Chinese Herbal/therapeutic use , Liver/drug effects , Stress, Psychological/drug therapy , Animals , Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Depression/genetics , Depression/metabolism , Disease Models, Animal , Drugs, Chinese Herbal/pharmacology , Liver/metabolism , Male , Mice, Inbred C57BL , Proteomics , Stress, Psychological/genetics , Stress, Psychological/metabolism
19.
Neurosci Lett ; 735: 135232, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32621948

ABSTRACT

Growing evidence suggested that energy deficiency might be involved in the pathophysiological mechanism of depression. Energy deficiency, mainly results from mitochondrial damage, can lead to the dysfunction of synaptic neurotransmission, and further cause depressive-like behavior. The antidepressant effect of resveratrol had been widely demonstrated in previous studies; however, the underlying mechanism remains poorly understood. The present study aimed to investigate whether the antidepressant effects of resveratrol involved in the energy levels and neurotransmission in the hippocampus. We found that resveratrol and fluoxetine significantly attenuated depressive-like behaviors induced by chronic unpredictable mild stress (CUMS), which evidenced by the increased sucrose preference and the reduced immobility time in a forced swimming test. In addition, resveratrol increased hippocampal ATP levels, decreased Na+-K+-ATPase and pyruvate levels, and upregulated the levels of mitochondrial DNA (mtDNA), mRNA expression of sirtuin (SIRT)1 and peroxisome proliferator-activated receptor γ coactivator (PGC)1α. Furthermore, resveratrol and fluoxetine increased serotonin (5-HT) levels and downregulated the mRNA expression of 5-HT transporter (SERT) in the hippocampus. The decreased protein expression of growth-associated protein (GAP)-43 induced by CUMS was also ameliorated by resveratrol and fluoxetine. These findings demonstrated the antidepressant effects of resveratrol and suggested that resveratrol was able to promote mitochondrial biogenesis, enhance ATP and 5-HT levels, as well as upregulate GAP-43 expression in the hippocampus.


Subject(s)
Adenosine Triphosphate/biosynthesis , GAP-43 Protein/biosynthesis , Hippocampus/metabolism , Resveratrol/therapeutic use , Serotonin/biosynthesis , Stress, Psychological/metabolism , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Chronic Disease , Dose-Response Relationship, Drug , Hippocampus/drug effects , Male , Mice , Mice, Inbred ICR , Resveratrol/pharmacology , Stress, Psychological/drug therapy , Stress, Psychological/psychology , Treatment Outcome
20.
Pharm Biol ; 58(1): 385-392, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32393087

ABSTRACT

Context: Berberine is an alkaloid that possesses various pharmacologic effects.Objective: To explore the mechanism of berberine to improve insulin sensitivity in fructose-fed mice.Materials and methods: Sixty male ICR mice were randomly divided into 6 groups (10 mice in each group): control, fructose, pioglitazone (10 mg/kg) and berberine (50, 100, and 200 mg/kg). Except for the control group, the mice received 20% fructose drinking for 10 weeks. Pioglitazone and berberine were orally administered once daily during the last 4 weeks. The insulin sensitivity was evaluated using an oral glucose tolerance test (OGTT). The serum levels of fasting glucose and insulin, blood lipids, and hormones were determined. The hepatic AMP and ATP contents were detected using high performance liquid chromatography (HPLC) analysis, and the protein expression was examined by immunoblotting.Results: Berberine significantly reversed the insulin resistance induced by fructose, including lowering fasting insulin levels (from 113.9 to 67.4) and area under the curve (AUC) during OGTT (from 1310 to 1073), decreasing serum leptin (from 0.28 to 0.13) and increasing serum adiponectin levels (from 1.50 to 2.80). Moreover, berberine enhanced the phosphorylation levels of protein kinase B (PKB/AKT; 2.27-fold) and glycogen synthase kinase-3ß (GSK3ß; 2.56-fold), and increased hepatic glycogen content (from 0.19 to 1.65). Furthermore, berberine upregulated the protein expression of peroxisome proliferator activated receptor gamma coactivator 1α (PGC1α; 2.61-fold), phospho-AMP-activated protein kinase (p-AMPK; 1.35-fold) and phospho-liver kinase B1 (p-LKB1; 1.41-fold), whereas it decreased the AMP/ATP ratio (from 4.25 to 1.82).Conclusion: The present study demonstrated the protective effects of berberine against insulin resistance induced by fructose. Our findings may provide an experimental basis for the application of berberine in the treatment of insulin resistance.


Subject(s)
Berberine/pharmacology , Fructose/toxicity , Insulin Resistance/physiology , Liver/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , AMP-Activated Protein Kinase Kinases , AMP-Activated Protein Kinases , Animals , Dose-Response Relationship, Drug , Fructose/antagonists & inhibitors , Liver/drug effects , Male , Mice , Mice, Inbred ICR , Signal Transduction/drug effects , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...