Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 135(17): 174701, 2011 Nov 07.
Article in English | MEDLINE | ID: mdl-22070311

ABSTRACT

Charge transfer dynamics across the lying-down 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) organic semiconductor molecules on Au(111) interface has been investigated using the core-hole clock implementation of resonant photoemission spectroscopy. It is found that the charge transfer time scale at the PTCDA∕Au(111) interface is much larger than the C 1s core-hole lifetime of 6 fs, indicating weak electronic coupling between PTCDA and the gold substrate due to the absence of chemical reaction and∕or bonding.

2.
J Phys Condens Matter ; 22(17): 175504, 2010 May 05.
Article in English | MEDLINE | ID: mdl-21393671

ABSTRACT

The electronic structure of Eu-intercalated C(70) has been studied by a synchrotron radiation photoemission spectroscopy technique. At low intercalation levels (below the stoichiometry of Eu(3)C(70)), the photoemission data clearly exhibit charge transfer from Eu 6s states to the lowest-unoccupied-molecular-orbital (LUMO) and the LUMO + 1 of C(70). The amount of charge transfer reaches its maximum far before intercalation saturation. Detailed analysis reveals that most of the 5d6s electrons of Eu occupy the so-called interstitial states in the saturation phase (Eu(9)C(70)). The interstitial states are induced by a Eu sub-lattice formed at heavy intercalation levels, and comprise substantial 6s-π hybridized states. The π states participating in the hybridization are mainly the HOMO - n (n = 6-10) orbitals. The PES data also reveal the semiconducting property for both Eu(3)C(70) and Eu(9)C(70). The 6s-(HOMO - n) hybridization and the semiconducting property should play important roles in understanding the ferromagnetic mechanism for Eu(9)C(70).

SELECTION OF CITATIONS
SEARCH DETAIL
...