Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 221
Filter
1.
Chin Med ; 19(1): 72, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773596

ABSTRACT

L-type calcium channels (LTCCs), the largest subfamily of voltage-gated calcium channels (VGCCs), are the main channels for Ca2+ influx during extracellular excitation. LTCCs are widely present in excitable cells, especially cardiac and cardiovascular smooth muscle cells, and participate in various Ca2+-dependent processes. LTCCs have been considered as worthy drug target for cardiovascular, neurological and psychological diseases for decades. Natural products from Traditional Chinese medicine (TCM) have shown the potential as new drugs for the treatment of LTCCs related diseases. In this review, the basic structure, function of LTCCs, and the related human diseases caused by structural or functional abnormalities of LTCCs, and the natural LTCCs antagonist and their potential usages were summarized.

2.
Front Chem ; 12: 1383886, 2024.
Article in English | MEDLINE | ID: mdl-38807977

ABSTRACT

Sixteen ceanothane-type triterpenoids, including four new compounds-hovendulcisic acids A-D (1-4) -were purified from the stems of Hovenia dulcis Thunb. The structures of 1-4 were confirmed by comprehensive means including ECD and quantum chemical calculations. Putative biosynthetic pathways of 1-16 were proposed, and 3, 5, and 15 exhibited antitumor activity on A549 and MDA-MB-231 cells.

3.
BMC Psychol ; 12(1): 265, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741161

ABSTRACT

BACKGROUND: the AMORAL model emphasizes the close connection of individuals' belief system and malevolent creativity. Belief in a just world theory (BJW) states that people have a basic need to believe that the world they live in is just, and everyone gets what they deserve. Therefore, justice matters to all people. Justice sensitivity, as one of individual trait, has been found associated with negative goals. However, relevant studies have not tested whether justice sensitivity can affect malevolent creativity and its psychological mechanisms. Additionally, researchers have found that both anger and emotion regulation linked with justice sensitivity and malevolent creativity, but their contribution to the relationship between justice sensitivity and malevolent creativity remained unclear. The current study aims to explore the influence of justice sensitivity on malevolent creativity, the mediating effect of trait anger/state anger on the relationship between justice sensitivity and malevolent creativity, and the moderating effect of emotion regulation on this mediating effect. METHODS: A moderated mediating model was constructed to test the relationship between justice sensitivity and malevolent creativity. A sample of 395 Chinese college students were enrolled to complete the questionnaire survey. RESULTS: Justice sensitivity positively correlated with malevolent creativity, both trait anger and state anger partly mediated the connection between justice sensitivity and malevolent creativity. Moreover, emotion regulation moderated the indirect effect of the mediation model. The indirect effect of justice sensitivity on malevolent creativity through trait anger/state anger increased as the level of emotion regulation increased. The results indicated that justice sensitivity can affect malevolent creativity directly and indirectly through the anger. The level of emotion regulation differentiated the indirect paths of justice sensitivity on malevolent creativity. CONCLUSIONS: Justice sensitivity and malevolent creativity was mediated by trait anger/state anger. The higher sensitivity to justice, the higher level of trait anger/state anger, which in turn boosted the tendency of malevolent creativity. This indirect connection was moderated by emotion regulation, individuals with high emotion regulation are better able to buffer anger from justice sensitivity.


Subject(s)
Anger , Creativity , Emotional Regulation , Social Justice , Humans , Male , Female , Young Adult , Adult , Social Justice/psychology , Adolescent , Students/psychology
4.
J Cancer ; 15(11): 3510-3530, 2024.
Article in English | MEDLINE | ID: mdl-38817865

ABSTRACT

Ovarian cancer has the highest mortality among gynecological malignancies, and exploring effective strategies to reverse the immunosuppressive tumor microenvironment in patients remains a pressing scientific challenge. In this study, we identified a pyroptosis-related protective factor, GBP5, which significantly inhibits the growth of ovarian cancer cells and patient-derived ovarian cancer organoids, impeding the invasion and migration of ovarian cancer cells. Results of immunohistochemistry and external single-cell data verification were consistent. Further research confirmed that GBP5 in ovarian cancer cell can induce canonical pyroptosis through JAK2/STAT1 pathway, thereby restraining the progression of ovarian cancer. Interestingly, in this study, we also discovered that ovarian cancer cells with high GBP5 expression exhibit increased expressions of CXCL9/10/11 in a co-culture assay. Subsequent immune cell infiltration analyses revealed the remodeling of immunosuppressive microenvironment in ovarian cancer patients, characterized by increased infiltration and polarization of M1 macrophages. External immunotherapy database analysis showed profound potential for the application of GBP5 in immunotherapy strategies for ovarian cancer. Overall, our study demonstrates that the protective factor GBP5 significantly inhibits ovarian cancer progression, triggering canonical pyroptosis through the JAK2-STAT1 pathway. Driven by its pro-inflammatory nature, it can also enhance M1 macrophages polarization and reverse immunosuppressive microenvironment, thus providing new insights for ovarian cancer treatment.

5.
Sci Rep ; 14(1): 12465, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816567

ABSTRACT

The Golden2-like (GLK) transcription factor family is a significant group of transcription factors in plantae. The currently available studies have shown that GLK transcription factors have been studied mainly in chloroplast growth and development, with fewer studies in abiotic stress regulation. In this study, all tea plant GLK transcription factors were identified for the first time in tea plants, and genome-wide identification, phylogenetic analysis, and thematic characterization were performed to identify 66 GLK transcription factors in tea plants. These genes are categorized into seven groups, and an amino acid sequence comparison analysis is performed. This study revealed that the structure of GLK genes in tea plants is highly conserved and that these genes are distributed across 14 chromosomes. Collinearity analysis revealed 17 pairs of genes with fragment duplications and one pair of genes with tandem duplications, and the analysis of Ka/Ks ratios indicated that most of the genes underwent negative purifying selection. Analysis of promoter cis-elements revealed that the promoters of tea plant GLK genes contain a large number of cis-acting elements related to phytohormones and stress tolerance. In addition, a large number of genes contain LTR elements, suggesting that tea plant GLK genes are involved in low-temperature stress. qRT‒PCR analysis revealed that the expression of CsGLK17, CsGLK38, CsGLK54, CsGLK11 and CsGLK60 significantly increased and that the expression of CsGLK7 and CsGLK13 decreased in response to low-temperature induction. Taken together, the results of the transcription profile analysis suggested that CsGLK54 may play an important regulatory role under low-temperature stress. The subcellular localization of CsGLK54 was in the nucleus. Furthermore, CsGLK54 positively regulated the transcription levels of the NbPOD and NbSOD genes under low-temperature stress, which led to an increase in POD and SOD enzyme activities and a decrease in MDA content. These findings provide valuable insights into the regulatory mechanism of low-temperature stress in tea plants.


Subject(s)
Camellia sinensis , Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Proteins , Transcription Factors , Camellia sinensis/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Cold Temperature , Cold-Shock Response/genetics , Promoter Regions, Genetic , Stress, Physiological/genetics , Gene Expression Profiling
6.
Nat Commun ; 15(1): 3438, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653960

ABSTRACT

PbZrO3 has been broadly considered as a prototypical antiferroelectric material for high-power energy storage. A recent theoretical study suggests that the ground state of PbZrO3 is threefold-modulated ferrielectric, which challenges the generally accepted antiferroelectric configuration. However, such a novel ferrielectric phase was predicted only to be accessible at low temperatures. Here, we successfully achieve the room-temperature construction of the strongly competing ferrielectric and antiferroelectric state by strain-mediated phase separation in PbZrO3/SrTiO3 thin film. We demonstrate that the phase separation occurs spontaneously in quasi-periodic stripe-like patterns under a compressive misfit strain and can be tailored by varying the film thickness. The ferrielectric phase strikingly exhibitsa threefold modulation period with a nearly up-up-down configuration, which could be stabilized and manipulated by the formation and evolution of interfacial defects under applied strain. The present results construct a fertile ground for further exploring the physical properties and applications based on the novel ferrielectric phase.

7.
Adv Mater ; : e2402379, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38655900

ABSTRACT

Circulating tumor cells (CTCs) detection presents significant advantages in diagnosing liver cancer due to its noninvasiveness, real-time monitoring, and dynamic tracking. However, the clinical application of CTCs-based diagnosis is largely limited by the challenges of capturing low-abundance CTCs within a complex blood environment while ensuring them alive. Here, an ultrastrong ligand, l-histidine-l-histidine (HH), specifically targeting sialylated glycans on the surface of CTCs, is designed. Furthermore, HH is integrated into a cell-imprinted polymer, constructing a hydrogel with precise CTCs imprinting, high elasticity, satisfactory blood compatibility, and robust anti-interference capacities. These features endow the hydrogel with excellent capture efficiency (>95%) for CTCs in peripheral blood, as well as the ability to release CTCs controllably and alive. Clinical tests substantiate the accurate differentiation between liver cancer, cirrhosis, and healthy groups using this method. The remarkable diagnostic accuracy (94%), lossless release of CTCs, material reversibility, and cost-effectiveness ($6.68 per sample) make the HH-based hydrogel a potentially revolutionary technology for liver cancer diagnosis and single-cell analysis.

8.
Bioorg Chem ; 147: 107387, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643561

ABSTRACT

Histamine 4 receptor (H4R), the most recently identified subtype of histamine receptor, primarily induces inflammatory reactions upon activation. Several H4R antagonists have been developed for the treatment of inflammatory bowel disease (IBD) and atopic dermatitis (AD), but their use has been limited by adverse side effects, such as a short half-life and toxicity. Natural products, as an important source of anti-inflammatory agents, offer minimal side effects and reduced toxicity. This work aimed to identify novel H4R antagonists from natural products. An H4R target-pathway model deconvoluted downstream Gi and MAPK signaling pathways was established utilizing cellular label-free integrative pharmacology (CLIP), on which 148 natural products were screened. Cryptotanshinone was identified as selective H4R antagonist, with an IC50 value of 11.68 ± 1.30 µM, which was verified with Fluorescence Imaging Plate Reader (FLIPR) and Cellular Thermal Shift (CTS) assays. The kinetic binding profile revealed the noncompetitive antagonistic property of cryptotanshinone. Two allosteric binding sites of H4R were predicted using SiteMap, Fpocket and CavityPlus. Subsequent molecular docking and dynamics simulation indicated that cryptotanshinone interacts with H4R at a pocket formed by the outward interfaces between TM3/4/5, potentially representing a new allosteric binding site for H4R. Overall, this study introduced cryptotanshinone as a novel H4R antagonist, offering promise as a new hit for drug design of H4R antagonist. Additionally, this study provided a novel screening model for the discovery of H4R antagonists.


Subject(s)
Biological Products , Dose-Response Relationship, Drug , Drug Discovery , Receptors, Histamine H4 , Humans , Biological Products/chemistry , Biological Products/pharmacology , Receptors, Histamine H4/antagonists & inhibitors , Receptors, Histamine H4/metabolism , Structure-Activity Relationship , Molecular Structure , Phenanthrenes/pharmacology , Phenanthrenes/chemistry , Histamine Antagonists/pharmacology , Histamine Antagonists/chemistry , Molecular Docking Simulation , Phenotype
10.
Stem Cell Res Ther ; 15(1): 64, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38438896

ABSTRACT

BACKGROUND: Premature ovarian failure (POF) has a profound impact on female reproductive and psychological health. In recent years, the transplantation of umbilical cord-derived mesenchymal stem cells (UC-MSCs) has demonstrated unprecedented potential in the treatment of POF. However, the heterogeneity of human UC-MSCs remains a challenge for their large-scale clinical application. Therefore, it is imperative to identify specific subpopulations within UC-MSCs that possess the capability to improve ovarian function, with the aim of reducing the uncertainty arising from the heterogeneity while achieving more effective treatment of POF. METHODS: 10 × Genomics was performed to investigate the heterogeneity of human UC-MSCs. We used LRP1 as a marker and distinguished the potential therapeutic subpopulation by flow cytometry, and determined its secretory functions. Unsorted UC-MSCs, LRP1high and LRP1low subpopulation was transplanted under the ovarian capsules of aged mice and CTX-induced POF mice, and therapeutic effects was evaluated by assessing hormone levels, estrous cycles, follicle counts, and embryo numbers. RNA sequencing on mouse oocytes and granulosa cells after transplantation was performed to explore the mechanism of LRP1high subpopulation on mouse oocytes and granulosa cells. RESULTS: We identified three distinct functional subtypes, including mesenchymal stem cells, multilymphoid progenitor cells and trophoblasts. Additionally, we identified the LRP1high subpopulation, which improved ovarian function in aged and POF mice. We elucidated the unique secretory functions of the LRP1high subpopulation, capable of secreting various chemokines, cytokines, and growth factors. Furthermore, LRP1 plays a crucial role in regulating the ovarian microenvironment, including tissue repair and extracellular matrix remodeling. Consistent with its functions, the transcriptomes of oocytes and granulosa cells after transplantation revealed that the LRP1high subpopulation improves ovarian function by modulating the extracellular matrix of oocytes, NAD metabolism, and mitochondrial function in granulosa cells. CONCLUSION: Through exploration of the heterogeneity of UC-MSCs, we identified the LRP1high subpopulation capable of improving ovarian function in aged and POF mice by secreting various factors and remodeling the extracellular matrix. This study provides new insights into the targeted exploration of human UC-MSCs in the precise treatment of POF.


Subject(s)
Mesenchymal Stem Cells , Primary Ovarian Insufficiency , Humans , Female , Animals , Mice , Aged , Primary Ovarian Insufficiency/therapy , Oocytes , Stem Cells , Low Density Lipoprotein Receptor-Related Protein-1/genetics
11.
Trop Med Infect Dis ; 9(2)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38393131

ABSTRACT

We established a mouse model of Schistosoma japonicum infection in order to study the effects of the infection on hepatocyte autophagy and apoptosis. We also stimulated HepG2 cells with soluble egg antigens (SEA) in vitro. At two, four, and six weeks post-infection, quantitative real-time PCR and Western blot (WB) were used to detect liver expression levels of autophagy and apoptosis-related proteins. HepG2 cells were treated with different concentrations of SEA. The changes in the levels of autophagy-related proteins and HepG2 cell apoptosis were detected. The Lc3b, Beclin1, Atg7, and Atg12 mRNA levels were significantly lower at four and six weeks after infection than those in the uninfected group. At four and six weeks following infection, the levels of Beclin1, LC3BII/I, Atg7, and p62 proteins were considerably lower than those in the uninfected group. The protein levels of pro-apoptotic Bax and cleaved caspase 3 and fibrosis-related proteins α-SMA and collagen 3 in the liver post-infection were significantly higher than those in uninfected mice. HepG2 cells stimulated with SEA showed decreased levels of Beclin1, p62, and Atg7 proteins and significantly increased apoptosis rates. The findings demonstrated that following infection with S. japonicum, mice's liver fibrosis worsened, hepatic autophagy was suppressed, and hepatocyte apoptosis was encouraged.

12.
Indian Heart J ; 76(2): 79-85, 2024.
Article in English | MEDLINE | ID: mdl-38342141

ABSTRACT

BACKGROUND: Coronary heart disease (CHD) is a common heart disease and a leading cause of death in developed countries and some developing countries such as China. It is recognized as a multifactorial disease, with dyslipidemia being closely associated with the progression of coronary atherosclerosis. Numerous studies have confirmed the relationship between a single indicator of low-density lipoprotein cholesterol (LDL-C) or high-density lipoprotein cholesterol (HDL-C) and CHD. However, the association between LDL-C to HDL-C ratio (LHR) and CHD remains unclear. This study aimed to comprehensively explore the association between LHR and CHD. METHODS: This meta-analysis was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses. PubMed, Embase, Web of Science, and China National Knowledge Infrastructure databases were comprehensively searched up to June 15, 2023, to find the studies that indicated the connection between LHR and CHD. A total of 12 published studies were selected. The random-effects model was used to pool the data and mean difference (MD), and the 95% confidence intervals (CI) were taken as the overall outcome. No language restrictions existed in the study selection. The Review Manager 5.4 and Stata 12 were used to analyze the data. RESULTS: Twelve high-quality clinical studies involving 5544 participants, including 3009 patients with CHD, were enrolled in the meta-analysis. The findings revealed that the LHR was higher by 0.65 in patients with CHD than in those without CHD (MD, 0.65; 95% CI, 0.50-0.80). CONCLUSION: The LHR was found to be positively correlated with CHD, suggesting that it may serve as a potential indicator of CHD.


Subject(s)
Biomarkers , Cholesterol, HDL , Cholesterol, LDL , Coronary Disease , Humans , Coronary Disease/blood , Coronary Disease/epidemiology , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Biomarkers/blood , Global Health , Risk Factors
14.
J Ethnopharmacol ; 326: 117913, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38360380

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Kaempferia galanga Linn. is an aromatic medicinal herb with extensively applied in India, China, Malaysia and other South Asia countries for thousands of years. It has been mentioned to treat abdominal tumors. Ethyl cinnamate (EC), one of the main chemical constituents of the rhizome of K. galanga, exhibited nematocidal, sedative and vasorelaxant activities. However, its anti-angiogenic activity, and anti-tumor effect have not been investigated. AIM OF THE STUDY: To investigate the anti-angiogenic mechanism of EC and its anti-tumor effect by suppressing angiogenesis. MATERIALS AND METHODS: The in vitro anti-angiogenic effect was evaluated using HUVECs model induced by VEGF and zebrafish model in vivo. The influence of the EC on phosphorylation of VEGFR2 and its downstream signaling pathways were evaluated by western blotting assay. Molecule docking technology was conducted to explore the interaction between EC and VEGFR2. SPR assay was used for detecting the binding affinity between EC and VEGFR2. To further investigate the molecular mechanism of EC on anti-angiogenesis, VEGFR2 knockdown in HUVECs and examined the influence of the EC. Anti-tumor activity of EC was evaluated using colony formation assay and apoptosis assay. The inhibitory effect of EC on tumor growth was explored using HT29 colon cancer xenograft model. RESULTS: EC obviously inhibited proliferation, migration, invasion and tube formation of VEGF-induced HUVECs. EC also induced apoptosis of HUVECs. Moreover, it inhibited the development of vessel formation in zebrafish. Further investigations demonstrated that EC could suppress the phosphorylation of VEGFR2, and its downstream signaling pathways were altered in VEGF-induced HUVECs. EC formed a hydrogen bond to bind with the ATP binding site of the VEGFR2, and EC-VEGFR2 interaction was shown in SPR assay. The suppressive effect of EC on angiogenesis was abrogated after VEGFR2 knockdown in HUVECs. EC inhibited the colon cancer cells colony formation and induced apoptosis. In addition, EC suppressed tumor growth in colon cancer xenograft model, and no detectable hepatotoxicity and nephrotoxicity. In addition, it inhibited the phosphorylation of VEGFR2, and its downstream signal pathways in tumor. CONCLUSIONS: EC could inhibit tumor growth in colon cancer by suppressing angiogenesis via VEGFR2 signaling pathway, and suggested EC as a promising candidate for colon cancer treatment.


Subject(s)
Cinnamates , Colonic Neoplasms , Colorectal Neoplasms , Animals , Humans , Zebrafish , Human Umbilical Vein Endothelial Cells , Vascular Endothelial Growth Factor A/metabolism , Cell Proliferation , Cell Movement , Signal Transduction , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Colorectal Neoplasms/metabolism , Colonic Neoplasms/drug therapy , Vascular Endothelial Growth Factor Receptor-2/metabolism , Neovascularization, Pathologic/metabolism
15.
Nano Lett ; 24(9): 2853-2860, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38407019

ABSTRACT

Cu-based liquid-like thermoelectric materials have garnered tremendous attention due to their inherent ultralow lattice thermal conductivity. However, their practical application is hampered by stability issues under a large current or temperature gradient. It has been reported that introduction of copper vacancies can enhance the chemical stability, whereas the micromechanism behind this macroscopic improvement still remains unknown. Here, we have established a quasi in situ TEM method to examine and compare the structural evolution of Cu2-xS0.2Se0.8 (x = 0, 0.05) under external electric fields. It is then found that the preset Cu vacancies could favor the electric-induced formation of a more stable intermediate phase, i.e., the hexagonal CuSe-type structure in the form of either lamellar defects (majorly) or long-range order (minorly), in which ordering of S and Se also occurred. Thereby, copper and chalcogen atoms could largely be solidified into the matrix, and the elemental deposition and evaporation process is mitigated under an electric field.

16.
Acta Pharmacol Sin ; 45(3): 545-557, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37932403

ABSTRACT

The matrix glycoprotein thrombospondin-1 (THBS1) modulates nitric oxide (NO) signaling in endothelial cells. A high-salt diet induces deficiencies of NO production and bioavailability, thereby leading to endothelial dysfunction. In this study we investigated the changes of THBS1 expression and its pathological role in the dysfunction of mesenteric artery endothelial cells (MAECs) induced by a high-salt diet. Wild-type rats, and wild-type and Thbs1-/- mice were fed chow containing 8% w/w NaCl for 4 weeks. We showed that a high salt diet significantly increased THBS1 expression and secretion in plasma and MAECs, and damaged endothelium-dependent vasodilation of mesenteric resistance arteries in wild-type animals, but not in Thbs1-/- mice. In rat MAECs, we demonstrated that a high salt environment (10-40 mM) dose-dependently increased THBS1 expression accompanied by suppressed endothelial nitric oxide synthase (eNOS) and phospho-eNOS S1177 production as well as NO release. Blockade of transforming growth factor-ß1 (TGF-ß1) activity by a TGF-ß1 inhibitor SB 431542 reversed THBS1 up-regulation, rescued the eNOS decrease, enhanced phospho-eNOS S1177 expression, and inhibited Smad4 translocation to the nucleus. By conducting dual-luciferase reporter experiments in HEK293T cells, we demonstrated that Smad4, a transcription promoter, upregulated Thbs1 transcription. We conclude that THBS1 contributes to endothelial dysfunction in a high-salt environment and may be a potential target for treatment of high-salt-induced endothelium dysfunction.


Subject(s)
Endothelial Cells , Sodium Chloride , Humans , Rats , Mice , Animals , Sodium Chloride/metabolism , Endothelial Cells/metabolism , Transforming Growth Factor beta1/metabolism , HEK293 Cells , Endothelium, Vascular/metabolism , Nitric Oxide Synthase Type III/metabolism , Vasodilation , Mesenteric Arteries , Thrombospondins/metabolism , Nitric Oxide/metabolism
17.
J Perianesth Nurs ; 39(1): 48-57.e3, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37831044

ABSTRACT

PURPOSE: The purpose of this article is to compare the safety of the laryngeal mask airway ProSeal (PLMA) and the streamlined liner of the pharynx airway (SLIPA) during general anesthesia. DESIGN: This study is a systematic review and meta-analysis. METHODS: Two authors performed searches of Embase, Web of Science, and PubMed to identify clinical trials that compared PLMA and SLIPA in patients receiving general anesthesia. Relative risk (RR) with corresponding 95% confidence intervals (CI) were used to pool the dichotomous data. The mean difference (MD) and the associated 95% CI were applied to pool continuous data. RevMan 5.0 software was used for data analysis. FINDINGS: A total of 15 studies with 1263 patients were included. There was no significant difference between PLMA and SLIPA in the rate of insertion success on the first attempt (RR = 1.02, 95% CI [0.95, 1.09], P = .59), airway sealing pressure (MD = 0.75, 95% CI [-0.09, 1.58], P = .08) and the incidence of a sore throat (RR = 0.85, 95% CI [0.7, 1.04], P = .12). The insertion time of PLMA was shorter than SLIPA (MD = 5.24, 95% CI [0.51, 9.98], P = .03), and the incidence of bloodstaining on the device was lower (RR = 0.72, 95% CI [0.55, 0.94], P = .02). CONCLUSIONS: Both devices have a high rate of insertion success on the first attempt and airway sealing pressure. But PLMA has a shorter insertion time and less incidence of blood staining, which is more advantageous than SLIPA.


Subject(s)
Laryngeal Masks , Pharyngitis , Humans , Laryngeal Masks/adverse effects , Pharynx , Anesthesia, General/adverse effects , Intubation, Intratracheal , Pharyngitis/etiology
18.
Int Immunopharmacol ; 125(Pt A): 111133, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38149573

ABSTRACT

Acetaminophen (N-acetyl-p-aminophenol; APAP), a widely used effective nonsteroidal anti-inflammatory drug, leads to acute liver injury at overdose worldwide. Evidence showed that the severity of liver injury associated with the subsequent involvement of inflammatory mediators and immune cells. The innate immune stimulator of interferon genes protein (STING) pathway was critical in modulating inflammation. Here, we show that STING was activated and inflammation was enhanced in the liver in APAP-overdosed C57BL/6J mice, and Sting mutation (Stinggt/gt) mice exhibited less liver damage. Multiplexing flow cytometry displayed that Sting mutation changed hepatic recruitment and replacement of macrophages/monocytes in APAP-overdosed mice, which was inclined to anti-inflammation. In addition, Sting mutation limited NLRP3 activation in the liver in APAP-overdosed mice, and inhibited the expression of inflammatory cytokines. Finally, MCC950, a potent and selective NLRP3 inhibitor, significantly ameliorated APAP-induced liver injury and inflammation. Besides, pretreatment of MCC950 in C57 mice resulted in changes of immune cells infiltration in the liver similar to Stinggt/gt mice. Our study revealed that STING played a crucial role in APAP-induced acute liver injury, possibly by maintaining liver immune cells homeostasis and inhibiting NLRP3 inflammasome activation, suggesting that inhibiting STING-NLRP3 pathway might be a potential therapeutic strategy for acute liver injury.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Membrane Proteins , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Mice , Acetaminophen/toxicity , Chemical and Drug Induced Liver Injury/genetics , Membrane Proteins/metabolism , Inflammation , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mice, Inbred C57BL
19.
Nano Lett ; 23(20): 9319-9325, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37787654

ABSTRACT

High electrical conductivity and super high hardness are two sought-after material properties, but both are contradictory because the effective suppression of dislocation movement generally increases the scattering of conducting electrons. Here we synthesized a high-entropy dodecaboride composite (HEDC) with a large number of atomic-scale interlocking layers. It shows a Vickers hardness of 51.2 ± 3.6 GPa under an applied load of 0.49 N and an electrical resistivity of 44.5 µΩ·cm at room temperature. Such HEDC achieves superhardness by inheriting the high intrinsic hardness of its constituent phases and restricting the dislocation motion to further enhance the extrinsic hardness through forming numerous atom-scale interlocks between different slip systems. Moreover, the HEDC maintains the excellent electrical conductivity of the constituent borides, and the competition between two correlating structures produces the special kind of coherent boundary that minimizes the scattering of conducting electrons and does not largely deteriorate the electrical conductivity.

20.
Chem Biol Interact ; 385: 110732, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37788752

ABSTRACT

CC chemokine receptor 3 (CCR3) plays important roles in atopic dermatitis (AD) and other related allergic diseases. Activation of CCR3 receptor signaling pathways regulates the recruitment of eosinophils to related tissues, releasing inflammatory mediators and causing inflammatory responses. However, none of the known CCR3 antagonists exhibit promising efficacy in clinical trials. In this work, we sought new natural CCR3 antagonists for drug development. To construct a high-throughput screening model, we established a stably transfected CHO-K1-Gα15-CCR3 cell line, and receptor expression was demonstrated by real-time quantitative PCR, confocal detection and flow cytometry analysis. Then, we applied a label-free cell phenotyping technique to profile and deconvolute CCR3 target pathways in CHO-K1-Gα15-CCR3 cells and found that activation of CCR3 triggered the Gq-PLC-Ca2+ and MAPK-P38-ERK pathways. By in vitro and in silico experiments, we discovered a novel CCR3 antagonist emodin, with an IC50 value of 27.28 ± 1.71 µM out of 266 compounds that were identified in 15 traditional Chinese medicines used in the clinical treatment of skin diseases. Molecular docking graphically presented the binding mode of emodin on CCR3. This work reports a new approach for CCR3 antagonist screening and pathway detection and identifies a new antagonist that would benefit future drug development.


Subject(s)
Biological Products , Emodin , Cricetinae , Animals , Receptors, CCR3/metabolism , Chemokine CCL11/metabolism , Molecular Docking Simulation , Biological Products/metabolism , CHO Cells , Eosinophils
SELECTION OF CITATIONS
SEARCH DETAIL
...