Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(8): e29622, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38681565

ABSTRACT

Anion exchange membrane fuel cells (AEMFCs) have recently attracted significant attention as low-cost alternative fuel cells to traditional proton exchange membrane fuel cells because of the possible use of platinum-group metal-free electrocatalysts. Over the past decade, new materials dedicated to the alkaline medium, such as anion exchange membranes (AEMs) and anion exchange ionomers (AEIs), have been developed and studied in AEMFCs. However, only a few AEMs and AEIs are commercially available, and there are no ready-to-use membrane electrodes assemblies (MEAs) with the desired AEMs and AEIs. Consequently, the need to manufacture in-house CCMs or GDEs becomes a reality that we must face. This work deals with the influence of ionomer content on the prepared MEAs with the commercial anion exchange membrane and ionomer from Aemion™ Ionomr Innovations AF1-HNN8-2 and AP1-ENN8/HNN8 respectively and by varying the support (gas diffusion layer or membrane). The prepared MEAs were characterized morphologically by SEM and profilometry, as well as electrochemically by AEMFC polarization curves and cyclic voltammetry. In addition, an attempt to investigate water management was made with and without a reference electrode in the cell to understand the behavior of water in an operating AEMFC. Our results show that CCM-based MEAs can undergo deformation during the anion conversion step, leading to weakening of the membrane and hence faster degradation in the fuel cell. On the contrary, no deformation was observed for the GDEs during the anionic conversion, although the results are poorer due to (i) poor interface contact between membrane and GDE that depends on ionomer ratio in the ink and (ii) a high overpotential at the anode due to the production of water that cannot be effectively evacuated.

2.
J Phys Chem B ; 117(21): 6534-40, 2013 May 30.
Article in English | MEDLINE | ID: mdl-23678859

ABSTRACT

Through (1)H NMR relaxometry techniques (determination of the spin-lattice relaxation time as a function of the NMR measurement frequency), we have investigated, on a molecular scale, the water behavior in Nafion NRE 212 under acid, sodium, and potassium forms, the latter arising from different chemical treatments (with and without EDTA). Quantitatively, it turns out that (i) EDTA removes unwanted cations that may affect water mobility and (ii) the natural countercations (sodium and potassium) also affect water mobility according to their size. In order to go further, we have developed a new methodology that rests on the comparison between samples prepared with H2O and D2O. For the latter, residual protons allow us to exclusively access intermolecular contribution to proton relaxation and, thus, enable us to deduce the intramolecular contribution of proton relaxation in H2O. The analysis of this contribution reveals, for the first time, two types of bound water in Nafion.

SELECTION OF CITATIONS
SEARCH DETAIL
...