Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Front Plant Sci ; 14: 1262001, 2023.
Article in English | MEDLINE | ID: mdl-37965002

ABSTRACT

Waterlogging constrains crop yields in many regions around the world. Despite this, key drivers of crop sensitivity to waterlogging have received little attention. Here, we compare the ability of the SWAGMAN Destiny and CERES models in simulating soil aeration index, a variable contemporaneously used to compute three distinct waterlogging indices, denoted hereafter as WI Destiny, WIASD1, and WIASD2. We then account for effects of crop growth stage and soil temperature on waterlogging impact by introducing waterlogging severity indices, WI Growth, which accommodates growth stage tolerance, and WI Plus, which accounts for both soil temperature and growth stage. We evaluate these indices using data collected in pot experiments with genotypes "Yang mai 11" and "Zheng mai 7698" that were exposed to both single and double waterlogging events. We found that WI Plus exhibited the highest correlation with yield (-0.82 to -0.86) suggesting that waterlogging indices which integrate effects of temperature and growth stage may improve projections of yield penalty elicited by waterlogging. Importantly, WI Plus not only allows insight into physiological determinants, but also lends itself to remote computation through satellite imagery. As such, this index holds promise in scalable monitoring and forecasting of crop waterlogging.

2.
Huan Jing Ke Xue ; 39(12): 5680-5686, 2018 Dec 08.
Article in Chinese | MEDLINE | ID: mdl-30628415

ABSTRACT

A laboratory incubation experiment was conducted using the 14C isotope labeling technique to study the characteristics of organic carbon mineralization and their response to glucose addition when treated with a combination of straw and chemical fertilizer (ST), inorganic fertilizer (NPK), and non-fertilization (CK). The cumulative mineralization rate (ratio of accumulated mineralization amount to total organic carbon content) in CK reaches 1.64% at the end of incubation (56 days). The cumulative mineralization rate during NPK and ST treatments is significantly lower than that in CK (by 0.34% and 0.39%, respectively). This indicates that long-term fertilization affects the soil carbon sequestration. Varying long-term fertilization influences the response of paddy soil to glucose addition and leads to different levels of the priming effect. The priming effect on soil organic carbon mineralization of the three treatments gradually changes from negative to positive with increasing incubation time. The significantly negative cumulative priming effect in ST and NPK after 56 d is 22.07 and 9.05 times higher than that in CK, respectively. The results of the structural equation model indicate that the NH4+-N and DOC contents indirectly influence the cumulative priming effect on soil organic carbon by affecting the MBC and MBN contents. The NH4+-N concentration has a direct and significant negative effect on the cumulative priming effect. In conclusion, long-term fertilization treatments reduce the cumulative organic carbon mineralization rate of paddy soil. Fertilizer, especially the combination of straw and chemical fertilizer, enhances the soil carbon sequestration and accumulation.


Subject(s)
Carbon/chemistry , Fertilizers , Soil/chemistry , Carbon Sequestration , Oryza
3.
Zhongguo Zhong Yao Za Zhi ; 38(22): 3851-6, 2013 Nov.
Article in Chinese | MEDLINE | ID: mdl-24558863

ABSTRACT

Field experiments were conducted in Shangluo pharmaceutical base in Shaanxi province to study the effect of nitrogen, phosphorus and potassium in different fertilization levels on Platycodon grandiflorum soil microorganism and activities of soil enzyme, using three-factor D-saturation optimal design with random block design. The results showed that N0P2K2, N2P2K0, N3P1K3 and N3P3K1 increased the amount of bacteria in 0-20 cm of soil compared with N0P0K0 by 144.34%, 39.25%, 37.17%, 53.58%, respectively. The amount of bacteria in 2040 cm of soil of N3P1K3 increased by 163.77%, N0P0K3 increased the amount of soil actinomycetes significantly by 192.11%, while other treatments had no significant effect. N2P0K2 and N3P1K3 increased the amounts of fungus significantly in 0-20 cm of soil compared with N0P0K0, increased by 35.27% and 92.21%, respectively. N3P0K0 increased the amounts of fungus significantly in 20-40 cm of soil by 165.35%, while other treatments had no significant effect. All treatments decrease soil catalase activity significantly in 0-20 cm of soil except for N2P0K2, and while N2P2K0 and NPK increased catalase activity significantly in 2040 cm of soil. Fertilization regime increased invertase activity significantly in 2040 cm of soil, and decreased phosphatase activity inordinately in 0-20 cm of soil, while increased phosphatase activity in 2040 cm of soil other than N1P3K3. N3P0K0, N0P0K3, N2P0K2, N2P2K0 and NPK increased soil urease activity significantly in 0-20 cm of soil compared with N0P0K0 by 18.22%, 14.87%,17.84%, 27.88%, 24.54%, respectively. Fertilization regime increased soil urease activity significantly in 2040 cm of soil other than N0P2K2.


Subject(s)
Bacteria/growth & development , Bacterial Proteins/analysis , Fertilizers/analysis , Fungal Proteins/analysis , Fungi/growth & development , Soil Microbiology , Bacteria/enzymology , Bacteria/isolation & purification , Bacteria/metabolism , Bacterial Proteins/metabolism , Catalase/analysis , Catalase/metabolism , Fungal Proteins/metabolism , Fungi/enzymology , Fungi/isolation & purification , Fungi/metabolism , Nitrogen/metabolism , Phosphoric Monoester Hydrolases/analysis , Phosphoric Monoester Hydrolases/metabolism , Phosphorus/metabolism , Potassium/metabolism , Soil/chemistry , Urease/analysis , Urease/metabolism
4.
Ying Yong Sheng Tai Xue Bao ; 23(8): 2171-7, 2012 Aug.
Article in Chinese | MEDLINE | ID: mdl-23189695

ABSTRACT

A field experiment with three-factor (N, P, and K) and quadratic saturation D-optimal design was conducted to evaluate the effects of the fertilization rates of N, P, and K on the yield and root baicalin content of Scutellaria baicalensis Georgi at harvesting time. A ternary quadratic polynomial mathematical model was built, in which, the N, P, and K fertilization rates were independent variables, and the yield and root baicalin content were the target functions. Through the analysis of the model, the optimum fertilization pattern was obtained. The results showed that the fertilization rates of N and P had significant effects on the yield of S. baicalensis. Under low fertilization level, the yield increased with increasing N and P fertilization rates; after exceeding definite fertilization range, no obvious effects were observed. N, P, and K fertilization all had significant effects on the root baicalin content. With increasing fertilization rates of N and K, the root baicalin content rates decreased after an initial increase. Under low fertilization level, the root baicalin content increased with increasing P fertilization rate first, and kept stable then. There existed interactive effects between the fertilization rates of N and P, N and K, and P and K on the yield and root baicalin content of S. baicalensis. Under our experimental conditions, the optimum fertilization model for obtaining over 4000 kg x hm(-2) of S. baicalensis yield and > 14% of root baicalin content was 90.5-104.7 kg x hm(-2) of N, 163.9-199.9 kg x hm(-2) of P2O5, and 84.1-140.8 kg x hm(-2) of K2O, with an N:P2O5:K2O ratio of approximately 1:1.86:1.15.


Subject(s)
Flavonoids/biosynthesis , Nitrogen/chemistry , Phosphorus/chemistry , Potassium/chemistry , Scutellaria baicalensis/growth & development , Biomass , Fertilizers , Plant Roots/chemistry
5.
Ying Yong Sheng Tai Xue Bao ; 23(10): 2779-85, 2012 Oct.
Article in Chinese | MEDLINE | ID: mdl-23359940

ABSTRACT

Through the correlation analysis on the quantitative traits and their ratios of Salvia miltiorrhiza seedlings and seedling quality, a series of representative indices reflecting the seedling quality of the plant species were determined, and the seedling index suitable to the S. miltiorrhiza seedlings was ascertained by correlation degree analysis. Meanwhile, based on the relationships between the seedling index and the air temperature, solar radiation and air humidity, a simulation model for the seedling index of S. miltiorrhiza was established. The experimental data of different test plots and planting dates were used to validate the model. The results showed that the root diameter, stem diameter, crown dry mass, root dry mass, and plant dry mass had significant positive relationships with the other traits, and could be used as the indicators of the seedling's health. The seedling index of S. miltiorrhiza could be calculated by (stem diameter/root diameter + root dry mass/crown dry mass) x plant dry mass. The stem diameter, root dry mass, crown dry mass and plant dry mass had higher correlations with the seedling index, and thus, the seedling index determined by these indicators could better reflect the seedling's quality. The coefficient of determination (R2) between the predicted and measured values based on 1:1 line was 0.95, and the root mean squared error (RMSE) was 0.15, indicating that the model established in this study could precisely reflect the quantitative relationships between the seedling index of S. miltiorrhiza and the environmental factors.


Subject(s)
Environment , Salvia miltiorrhiza/growth & development , Seedlings/growth & development , Computer Simulation , Models, Biological , Regression Analysis , Sunlight , Temperature
6.
Zhongguo Zhong Yao Za Zhi ; 33(15): 1802-6, 2008 Aug.
Article in Chinese | MEDLINE | ID: mdl-19007001

ABSTRACT

OBJECTIVE: To study the effects of fertilizers with the different proportional of nitrogen, phosphorus and potassium on growth and active ingredient of Astragalus membranaceus. METHOD: Field experiment was conducted based on the D-saturation optimal design with three factors of nitrogen, phosphorus and potassium. The effects on growth and active ingredient of A. membranaceus were analyzed. RESULT: Fertilization promoted the seedling growth and provided abundant supply of nutrition for growth of root, yield and accumulation of active ingredient at the later growth stage, and increased the accumulation of dry matter of stem-leaf and root system. The effect of nitrogen, phosphorus and potassium application on the total dry matter accumulation of A. membranaceus was as following: nitrogen > potassium > phosphorus; the effect on the stem-leaf dry matter accumulation was as following: nitrogen > phosphorus > potassium; the effect on the root dry matter accumulation was as following: nitrogen > potassium > phosphorus. Nitrogen, phosphorus and potassium fertilizer increased the root yield of A. membranaceus. Obviously, the effect on the root yield was as following: nitrogen > potassium > phosphorus. The application of different proportional with nitrogen, phosphorus and potassium increased the content of polysaccharide and astragaloside, but had no distinct effect on the content of total flavonoids. The effect on the content of polysaccharide was as following: potassium > phosphorus > nitrogen, but the effect on the conten,t of astragaloside was as following: nitrogen > potassium > phosphorus. CONCLUSION: Nitrogen and potassium fertilizer application had more important effect on growth, yield and the contents of polysaccharide and astragaloside in A. membranaceus. During medicinal plants cultivation process, it should pay attention to the application of nitrogen fertilizer and potassium fertilizer and make balance application of nitrogen, phosphorus and potassium fertilizer.


Subject(s)
Astragalus propinquus/growth & development , Astragalus propinquus/metabolism , Nitrogen/pharmacology , Phosphorus/pharmacology , Potassium/pharmacology , Astragalus propinquus/drug effects , Fertilizers
SELECTION OF CITATIONS
SEARCH DETAIL
...