Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Zhonghua Nan Ke Xue ; 27(6): 489-498, 2021 Jun.
Article in Chinese | MEDLINE | ID: mdl-34914287

ABSTRACT

OBJECTIVE: To identify the key genes associated with the pathogenesis of PCa using the bioinformatics approach for a deeper insight into the molecular mechanisms underlying the development and progression of PCa. METHODS: The microarray datasets GSE70770, GSE32571 and GSE46602 were downloaded from the Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEG) in the normal prostate tissue and PCa were identified with the GEO2R tool, followed by functional enrichment analysis. A protein-protein interaction (PPI) network of DEGs was constructed by STRING and visualized with the Cytoscape software. RESULTS: A total of 235 DEGs were identified, including 61 up-regulated and 174 down-regulated genes, which were mainly enriched in focal adhesion kinase (FAK), ECM-receptor interaction, and other signaling pathways. From the PPI network were screened out 12 highly connected hub genes, including MYH11, TPM1, TPM2, SMTN, MYL9, VCL, ACTG1, CNN1, CALD1, ACTC1, MYLK and SORBS1, which were shown by hierarchical cluster analysis to be capable of distinguishing prostate cancer from non-cancer tissue. CONCLUSIONS: A total of 235 DEGs and 12 hub genes were identified in this study, which may contribute to a further understanding of the molecular mechanisms of the development and progression of PCa, and provide new candidate targets for the diagnosis and treatment of the malignancy.


Subject(s)
Computational Biology , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/genetics
2.
Materials (Basel) ; 10(8)2017 Aug 20.
Article in English | MEDLINE | ID: mdl-28825640

ABSTRACT

Recently, more attentions have been focused on the exploration of hemicelluloses in the paper industry. In this work, xylan-grafted-polyacrylamide (xylan-g-PAM) biopolymers were synthesized by the graft copolymerization of xylan with acrylamide, and their interaction with fibers was also investigated to improve waste newspaper pulp properties with or without cationic fiber fines. The influences of synthesis conditions were studied on the grafting ratio and the grafting efficiency of biopolymers. Prepared biopolymers were characterized by FTIR, 13C NMR, TGA and rheology. It was found that the grafting of PAM on xylan was conductive to improve xylan properties, such as the solubility in water, rheological features, and thermal stability, and the maximum grafting ratio was achieved to 14.7%. Moreover, xylan-g-PAM could obviously enhance the mechanical properties of waste paper pulps. Xylan-g-PAM also played the dominant role in increasing the strength of paper in the combination with prepared cationic fine fibers. When the amounts of xylan-g-PAM and cationic fiber fines were 1.0 wt % and 0.5 wt %, the mechanical properties such as the tensile index was increased by 49.09%, tear index was increased by 36.54%, and the burst index was increased by 20.67%, when compared with the control handsheets. Therefore, xylan-g-PAM as the new biopolymer could be promising in the application of strength agents for the paper industry as well as cationic fiber fines.

SELECTION OF CITATIONS
SEARCH DETAIL
...