Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 61(45): 17937-17942, 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36318518

ABSTRACT

The cycloaddition reaction of carbon dioxide (CO2) is a highly economic solution to becoming carbon-neutral. Herein, we have designed and synthesized a robust zinc(II)-organic framework (Zn-Ade-TCPE) by a function-directed strategy. Zn-Ade-TCPE possesses uncommon hexagonal cages with Lewis acid-base bifunctional sites and displays a high adsorption capacity for CO2. At room temperature and atmospheric pressure, Zn-Ade-TCPE exhibits outstanding activity, selectivity, and recyclability in the cycloaddition reaction of epoxides with CO2 because of the synergistic effect of multiple active sites and confined cavities.

2.
ACS Cent Sci ; 4(1): 105-111, 2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29392182

ABSTRACT

Metal-organic frameworks (MOFs) based on Ti-oxo clusters (Ti-MOFs) represent a naturally self-assembled superlattice of TiO2 nanoparticles separated by designable organic linkers as antenna chromophores, epitomizing a promising platform for solar energy conversion. However, despite the vast, diverse, and well-developed Ti-cluster chemistry, only a scarce number of Ti-MOFs have been documented. The synthetic conditions of most Ti-based clusters are incompatible with those required for MOF crystallization, which has severely limited the development of Ti-MOFs. This challenge has been met herein by the discovery of the [Ti8Zr2O12(COO)16] cluster as a nearly ideal building unit for photoactive MOFs. A family of isoreticular photoactive MOFs were assembled, and their orbital alignments were fine-tuned by rational functionalization of organic linkers under computational guidance. These MOFs demonstrate high porosity, excellent chemical stability, tunable photoresponse, and good activity toward photocatalytic hydrogen evolution reactions. The discovery of the [Ti8Zr2O12(COO)16] cluster and the facile construction of photoactive MOFs from this cluster shall pave the way for the development of future Ti-MOF-based photocatalysts.

3.
J Am Chem Soc ; 138(16): 5316-20, 2016 04 27.
Article in English | MEDLINE | ID: mdl-27016046

ABSTRACT

The synthesis of phase-pure metal-organic frameworks (MOFs) is of prime importance but remains a significant challenge because of the flexible and diversified coordination modes between metal ions and organic linkers. In this work, we report the synthesis of phase-pure MOFs via a facile seed-mediated approach. For several "accompanying" pairs of Zr-porphyrinic MOFs that are prone to yield mixtures, by fixing all reaction parameters except introducing seed crystals, MOFs in phase-pure forms have been obtained because the stage of MOF nucleation, which generates mixed nuclei, is bypassed. In addition, phase-pure MOF isomers with distinct pore structures have also been prepared through such an approach, revealing its versatility. To the best of our knowledge, this is an initial report on seed-assisted synthesis of phase-pure MOFs.

4.
J Am Chem Soc ; 137(42): 13440-3, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26434687

ABSTRACT

It is highly desirable to convert CO2 to valuable fuels or chemicals by means of solar energy, which requires CO2 enrichment around photocatalysts from the atmosphere. Here we demonstrate that a porphyrin-involved metal-organic framework (MOF), PCN-222, can selectively capture and further photoreduce CO2 with high efficiency under visible-light irradiation. Mechanistic information gleaned from ultrafast transient absorption spectroscopy (combined with time-resolved photoluminescence spectroscopy) has elucidated the relationship between the photocatalytic activity and the electron-hole separation efficiency. The presence of a deep electron trap state in PCN-222 effectively inhibits the detrimental, radiative electron-hole recombination. As a direct result, PCN-222 significantly enhances photocatalytic conversion of CO2 into formate anion compared to the corresponding porphyrin ligand itself. This work provides important insights into the design of MOF-based materials for CO2 capture and photoreduction.

SELECTION OF CITATIONS
SEARCH DETAIL
...