Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Mater ; 22(4): 489-494, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36959503

ABSTRACT

Pressure-induced magnetic phase transitions are attracting interest as a means to detect superconducting behaviour at high pressures in diamond anvil cells, but determining the local magnetic properties of samples is a challenge due to the small volumes of sample chambers. Optically detected magnetic resonance of nitrogen vacancy centres in diamond has recently been used for the in situ detection of pressure-induced phase transitions. However, owing to their four orientation axes and temperature-dependent zero-field splitting, interpreting these optically detected magnetic resonance spectra remains challenging. Here we study the optical and spin properties of implanted silicon vacancy defects in 4H-silicon carbide that exhibit single-axis and temperature-independent zero-field splitting. Using this technique, we observe the magnetic phase transition of Nd2Fe14B at about 7 GPa and map the critical temperature-pressure phase diagram of the superconductor YBa2Cu3O6.6. These results highlight the potential of silicon vacancy-based quantum sensors for in situ magnetic detection at high pressures.

2.
Nano Lett ; 22(24): 9943-9950, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36507869

ABSTRACT

Spin defects in silicon carbide appear to be a promising tool for various quantum technologies, especially for quantum sensing. However, this technique has been used only at ambient pressure until now. Here, by combining this technique with diamond anvil cell, we systematically study the optical and spin properties of divacancy defects created at the surface of SiC at pressures up to 40 GPa. The zero-field-splitting of the divacancy spins increases linearly with pressure with a slope of 25.1 MHz/GPa, which is almost two-times larger than that of nitrogen-vacancy centers in diamond. The corresponding pressure sensing sensitivity is about 0.28 MPa/Hz-1/2. The coherent control of divacancy demonstrates that coherence time decreases as pressure increases. Based on these, the pressure-induced magnetic phase transition of Nd2Fe14B sample at high pressures was detected. These experiments pave the way to use divacancy in quantum technologies such as pressure sensing and magnetic detection at high pressures.

3.
Rev Sci Instrum ; 93(6): 063901, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35778034

ABSTRACT

There is an ever increasing interest in studying dynamic-pressure dependent phenomena utilizing dynamic Diamond Anvil Cells (dDACs), devices capable of a highly controlled rate of compression. Here, we characterize and compare the compression rate of dDACs in which the compression is actuated via three different methods: (1) stepper motor (S-dDAC), (2) gas membrane (M-dDAC), and (3) piezoactuator (P-dDAC). The compression rates of these different types of dDAC were determined solely on millisecond time-resolved R1-line fluorescence of a ruby sphere located within the sample chamber. Furthermore, these different dynamic compression-techniques have been described and characterized over a broad temperature and pressure range from 10 to 300 K and 0-50 GPa. At room temperature, piezoactuation (P-dDAC) has a clear advantage in controlled extremely fast compression, having recorded a compression rate of ∼7 TPa/s, which is also found to be primarily influenced by the charging time of the piezostack. At 40-250 K, gas membranes (M-dDAC) have also been found to generate rapid compression of ∼0.5-3 TPa/s and are readily interfaced with moderate cryogenic and ultrahigh vacuum conditions. Approaching more extreme cryogenic conditions (<10 K), a stepper motor driven lever arm (S-dDAC) offers a solution for high-precision moderate compression rates in a regime where P-dDACs and M-dDACs can become difficult to incorporate. The results of this paper demonstrate the applicability of different dynamic compression techniques, and when applied, they can offer us new insights into matter's response to strain, which is highly relevant to physics, geoscience, and chemistry.

4.
Mater Sci Eng C Mater Biol Appl ; 89: 237-244, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29752094

ABSTRACT

Herein, dual stimuli-responsive compound vesicles were constructed based on host-guest interaction between a water-soluble pillar[6]arene (WP6) and an amphiphilic azobenzene-containing block copolymers (BCP). Reversible morphological transformation between compound vesicles and solid aggregates was achieved by repeated pH- and photo-stimuli. These compound vesicles were then applied in the controlled release of water-soluble anticancer drug, doxorubicin hydrochloride (DOX ·â€¯HCl). Upon external stimuli, the DOX ·â€¯HCl displayed a faster release rate than that without stimuli. Moreover, the compound vesicles showed an excellent cytocompatibility toward the human breast cancer cells (Michigan Cancer Foundation-7, MCF-7), and the drug-loaded compound vesicles exhibited lower cytotoxicity than free drug. The drug-loaded compound vesicles could be taken up by MCF-7 cells and can release the DOX ·â€¯HCl in cancer cells due to the acid environment, which was important for applications in the therapy of cancers as a controlled-release drug carrier.


Subject(s)
Azo Compounds/chemistry , Drug Carriers/chemistry , Polymers/chemistry , Quaternary Ammonium Compounds/chemistry , Ultraviolet Rays , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Cell Survival/drug effects , Cell Survival/radiation effects , Doxorubicin/chemistry , Doxorubicin/metabolism , Doxorubicin/pharmacology , Drug Liberation , Dynamic Light Scattering , Humans , Hydrogen-Ion Concentration , MCF-7 Cells , Microscopy, Electron, Transmission , Particle Size , Polymers/chemical synthesis , Solubility
5.
Langmuir ; 33(1): 176-183, 2017 01 10.
Article in English | MEDLINE | ID: mdl-27991788

ABSTRACT

A series of crystalline/ionic complexed block copolymers (BCPs) with various compositions have been prepared by sequential reactions. The BCPs with different hydrophilic fractions can self-assemble into various morphologies, such as spindlelike, rodlike, and spherical micelles with different crystallinity of the core. Bis(2-ethylhexyl) sulfosuccinate sodium salt (AOT) is added as a surfactant to induce the morphological transition of BCPs in aqueous media. The introduced AOT can be tightly bound to the cationic units, and a water-insoluble unit in the corona forms, leading to a reduced tethering density. Consequently, morphological variety changing from rods to platelets to fibril to dendrite-like micelles can be observed.

6.
ACS Macro Lett ; 5(7): 867-872, 2016 Jul 19.
Article in English | MEDLINE | ID: mdl-35614760

ABSTRACT

Crystalline/ionic liquid crystalline block copolymers (BCPs) with various compositions have been successfully prepared by sequential reactions. The effect of corona liquid crystalline order on self-assembly of BCPs in selective solvent is investigated in detail. It is found that two-dimensional single crystals with well-developed shapes are formed when the liquid crystalline order is present. By contrast, ill-developed platelets with small size or one-dimensional worm-like micelles are assembled if the liquid crystalline order of the corona segments is lost. It is speculated that the preferred parallel arrangement of liquid crystalline block enables it to expose more growth front of crystals. Accordingly, epitaxial crystallization will proceed readily, leading to fabrication of the well-defined single crystals.

SELECTION OF CITATIONS
SEARCH DETAIL
...