Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 153
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 2024 May 26.
Article in English | MEDLINE | ID: mdl-38798012

ABSTRACT

Nanosilvers with multifarious morphologies have been extensively used in many fields, but their morphology-dependent toxicity toward nontarget aquatic organisms remains largely unclear. Herein, we used matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to investigate the toxicological effects of silver nanomaterials with various morphologies on spatially resolved lipid profiles within multiple organs in adult zebrafish, especially for the gill, liver, and intestine. Integrated with histopathology, enzyme activity, accumulated Ag contents and amounts, as well as MSI results, we found that nanosilvers exhibit morphology-dependent nanotoxicity by disrupting lipid levels and producing oxidative stress. Silver nanospheres (AgNSs) had the highest toxicity toward adult zebrafish, whereas silver nanoflakes (AgNFs) exhibited greater toxicity than silver nanowires (AgNWs). Levels of differential phospholipids, such as PC, PE, PI, and PS, were associated with nanosilver morphology. Notably, we found that AgNSs induced greater toxicity in multiple organs, such as the brain, gill, and liver, while AgNWs and AgNFs caused greater toxicity in the intestine than AgNSs. Lipid functional disturbance and oxidative stress further caused inflammation and membrane damage after exposure to nanosilvers, especially with respect to sphere morphology. Taken together, these findings will contribute to clarifying the toxicological effects and mechanisms of different morphologies of nanosilvers in adult zebrafish.

2.
Pestic Biochem Physiol ; 200: 105843, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38582603

ABSTRACT

Isoxazoline is a novel structure with strong potential for controlling agricultural insect pests, but its high toxicity to honeybees limits its development in agriculture. Herein, a series of N-phenylamide isoxazoline derivatives with low honeybee toxicity were designed and synthesized using the intermediate derivatization method. Bioassay results showed that these compounds exhibited good insecticidal activity. Compounds 3b and 3f showed significant insecticidal effects against Plutella xylostella (P. xylostella) with median lethal concentrations (LC50) of 0.06 and 0.07 mg/L, respectively, comparable to that of fluralaner (LC50 = 0.02 mg/L) and exceeding that of commercial insecticide fluxametamide (LC50 = 0.52 mg/L). It is noteworthy that the acute honeybee toxicities of compounds 3b and 3f (LD50 = 1.43 and 1.63 µg/adult, respectively) were significantly reduced to 1/10 of that of fluralaner (LD50 = 0.14 µg/adult), and were adequate or lower than that of fluxametamide (LD50 = 1.14 µg/adult). Theoretical simulation using molecular docking indicates that compound 3b has similar binding modes with fluralaner and a similar optimal docking pose with fluxametamide when binding to the GABA receptor, which may contribute to its potent insecticidal activity and relatively low toxicity to honey bees. This study provides compounds 3b and 3f as potential new insecticide candidates and provides insights into the development of new isoxazoline insecticides exhibiting both high efficacy and environmental safety.


Subject(s)
Insecticides , Moths , Bees , Animals , Insecticides/toxicity , Insecticides/chemistry , Molecular Docking Simulation , Insecta , Receptors, GABA/metabolism , Amides/toxicity , Moths/metabolism
3.
Microorganisms ; 12(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38674624

ABSTRACT

Hexose transporters (HXT) play a crucial role in the pathogenicity of Magnaporthe oryzae, serving not only as key facilitators for acquiring and transporting sugar nutrients to support pathogen development, but also as sugar sensors which receive transduction signals. The objective of this study is to investigate the impact of MoHXT1-3 on rice pathogenicity and hexose affinity. MoHXT1-3 deletion mutants were generated using CRISPR/Cas9 technology, and their affinity for hexose was evaluated through yeast complementation assays and electrophysiological experiments in Xenopus oocytes. The results suggest that MoHXT1 does not contribute to melanin formation or hexose transportation processes. Conversely, MoHXT2, despite displaying lower affinity towards the hexoses tested in comparison to MoHXT3, is likely to have a more substantial impact on pathogenicity. The analysis of the transcription profiles demonstrated that the deletion of MoHXT2 caused a decrease in the expression of MoHXT3, whereas the knockout of MoHXT3 resulted in an upregulation of MoHXT2 transcription. It is noteworthy that the MoHXT2M145K variant displayed an incapacity to transport hexoses. This investigation into the functional differences in hexose transporters in Magnaporthe oryzae provides insights into potential advances in new strategies to target hexose transporters to combat rice blast by blocking carbon nutrient supply.

4.
J Agric Food Chem ; 72(18): 10295-10303, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38652776

ABSTRACT

We screened the contact activity of 32 commercial essential oils (EOs) and their synergistic effect with ß-cypermethrin against Blattella germanica. Results showed that the most effective EOs against B. germanica were from Illicium verum, Syzygium aromaticum, and Cinnamomum camphora, with LD50 values of less than 500 µg/insect. The most potent synergistic effects of ß-cypermethrin on B. germanica were from Dysphania ambrosioides and Mentha canadensis. Both oils have a co-toxic factor of 133.33. The results of the major compound testing of the EOs showed that trans-anisaldehyde and thymol have the best insecticidal activity against B. germanica, with LD50 values of 141.30 and 138.61 µg/insect, respectively. The compounds with the best synergistic effect on ß-cypermethrin were γ-terpinene and linalool at a concentration of 0.5%. The co-toxic factors for γ-terpinene and linalool were 150 and 133.33, respectively, which were similar to the synergistic effect observed with 2% piperonyl butoxide.


Subject(s)
Drug Synergism , Insecticides , Oils, Volatile , Pyrethrins , Insecticides/pharmacology , Insecticides/chemistry , Pyrethrins/pharmacology , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Animals , Blattellidae/drug effects , Plant Oils/pharmacology , Plant Oils/chemistry , Syzygium/chemistry
5.
J Agric Food Chem ; 72(13): 6942-6953, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38506763

ABSTRACT

Thiamethoxam (THX), when applied to the soil, can be taken up by citrus roots and subsequently transported to the leaves, providing effective protection of plants against the Asian citrus psyllid (Diaphorina citri Kuwayama). In this study, the field experiments showed that the coapplication of THX and nitrogen fertilizer (AN) did not affect THX uptake in six-year-old citrus plants. However, their coapplication promoted THX uptake in three-year-old Potassium trifoliate rootstocks and relieved the inhibition of AN at a higher level on plant growth characteristics, including biomass and growth of root and stem. RNA-seq analysis found that THX induced upregulation of a cationic amino acid transporter (PtCAT7) in citrus leaves. PtCAT7 facilitated THX uptake in the yeast strain to inhibit its growth, and the PtCAT7 protein was localized on the plasma membrane. Our results demonstrate that THX and N fertilizer can be coapplied and PtCAT7 may be involved in THX uptake in citrus.


Subject(s)
Citrus , Hemiptera , Insecticides , Animals , Thiamethoxam , Seedlings , Insecticides/pharmacology , Neonicotinoids/pharmacology , Fertilizers , Amino Acid Transport Systems
6.
Pest Manag Sci ; 80(7): 3126-3139, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38344938

ABSTRACT

BACKGROUND: Spodoptera litura is one of the most harmful lepidoptera pests in China, and is difficult to control due to its strong resistance to the current frequently used insecticide species. The requirement to develop pesticides with novel toxicology mechanisms to control S. litura is urgent. The quassinoid of bruceine D display outstanding systemic properties and strong insecticidal activity against S. litura, which possess notable application potential for integrative management of S. litura, but the mechanism of toxicity remains unclear. RESULTS: In this study, we found that bruceine D exerts potent growth inhibitory activity against S. litura, disrupting the ecdysone and juvenile hormone titers, and causing long-term adverse effects. Association analysis between transcriptomics and metabolomics suggested that bruceine D affected the digestion and absorption capacity of S. litura larvae by inducing a strong oxidative stress response and cell apoptosis in the intestine. Further analysis demonstrated that bruceine D can inhibit the activities of digestive and antioxidant enzymes and induce malondialdehyde (MDA) and reactive oxygen species (ROS) overaccumulation in the midgut. Moreover, the protein level of Bax, cleavage caspase 3, and cytochrome c expressed in cytoplasm (cyto) were up-regulated by bruceine D, while Bcl-2 and cytochrome c expressed in mitochondria (mito) were down-regulated. In addition, there was a noticeable increase in caspase-3 protease activity. Histopathological observations revealed that bruceine D damages the structure of midgut epithelial cells and activates lysosomes, which subsequently disrupts the midgut tissue. CONCLUSION: Overall, our findings suggested that bruceine D induced excessive ROS accumulation in midgut epithelial cells. The resulting cell apoptosis disrupted midgut tissue, leading ultimately to reduced nutrient digestion and absorption in the midgut and the inhibition of larval growth. © 2024 Society of Chemical Industry.


Subject(s)
Apoptosis , Insecticides , Larva , Spodoptera , Animals , Spodoptera/drug effects , Spodoptera/growth & development , Apoptosis/drug effects , Insecticides/pharmacology , Larva/drug effects , Larva/growth & development , Quassins/pharmacology , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
7.
J Agric Food Chem ; 72(7): 3773-3782, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38329040

ABSTRACT

The massive use of pyrethroid pesticides in agriculture has brought growing concerns about food safety due to their several harmful effects on human health, especially through the accumulation of the food chain. To date, most of the available analytical methods for pyrethroids still suffer from insufficient detection universality, complicated sample pretreatment, and detection processes, which severely limit their practical applications. Herein, a novel Förster resonance energy transfer (FRET)-assisted host-guest supramolecular nanoassembly is reported, for the first time, successfully realizing ratiometric fluorescent detection of pyrethroids in real samples through the indicator displacement assay (IDA) mechanism. This method is capable of detecting a broad spectrum of pyrethroids, including bifenthrin, cyfluthrin, cypermethrin, deltamethrin, etofenprox, fenvalerate, and permethrin, with ultrahigh detection sensitivity, great selectivity, high anti-interference ability, and, in particular, distinct emission color response from red to green. Such a large chromatic response makes this method available for fast and on-site detection of pyrethroids in real samples with the aid of several simple portable analytical apparatuses.


Subject(s)
Insecticides , Pesticides , Pyrethrins , Humans , Fluorescence Resonance Energy Transfer , Permethrin , Agriculture , Insecticides/analysis
8.
J Agric Food Chem ; 72(7): 3456-3468, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38331710

ABSTRACT

A series of arylfluorosulfates were synthesized as fungicide candidates through a highly efficient sulfur fluoride exchange (SuFEx) reaction. A total of 32 arylfluorosulfate derivatives with simple structures have been synthesized, and most of them exhibited fungal activities in vitro against five agricultural pathogens (Rhizoctonia solani, Botrytis cinerea, Fusarium oxysporum, Pyricularia oryzae, and Phytophthora infestans). Among the target compounds, compound 31 exhibited great antifungal activity against Rhizoctonia solani (EC50 = 1.51 µg/mL), which was comparable to commercial fungicides carbendazim and thiabendazole (EC50 = 0.53 and 0.70 µg/mL, respectively); compounds 17 and 30 exhibited antifungal activities against Pyricularia oryzae (EC50 = 1.64 and 1.73 µg/mL, respectively) comparable to carbendazim (EC50 = 1.02 µg/mL). The in vitro antifungal effect of compound 31 was also evaluated on rice plants against Rhizoctonia solani. Significant preventive and curative efficacies were observed (89.2% and 91.8%, respectively, at 200 µg/mL), exceeding that of thiabendazole. Primary study on the mechanism of action indicated that compound 31 could suppress the sclerotia formation of Rhizoctonia solani even at a very low concentration (1.00 µg/mL), destroy the cell membrane and mitochondria, trigger the release of cellular contents, produce excessive reactive oxygen species (ROS), and suppress the activity of several related enzymes. This work could bring new insights into the development of arylfluorosulfates as novel fungicides.


Subject(s)
Ascomycota , Benzimidazoles , Carbamates , Fungicides, Industrial , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Structure-Activity Relationship , Thiabendazole , Rhizoctonia , Plants
9.
ACS Nano ; 18(8): 6533-6549, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38355215

ABSTRACT

Conventional agrochemicals are underutilized due to their large particle sizes, poor foliar retention rates, and difficult translocation in plants, and the development of functional nanodelivery carriers with high adhesion to the plant body surface and efficient uptake and translocation in plants remains challenging. In this study, a nanodelivery system based on a pectin-encapsulated iron-based MOF (TF@Fe-MOF-PT NPs) was constructed to enhance the utilization of thifluzamide (TF) in rice plants by taking advantage of the pectin affinity for plant cell walls. The prepared TF@Fe-MOF-PT NPs exhibited an average particle size of 126.55 nm, a loading capacity of 27.41%, and excellent dual-stimulus responses to reactive oxygen species and pectinase. Foliar washing experiments showed that the TF@Fe-MOF-PT NPs were efficiently adhered to the surfaces of rice leaves and stems. Confocal laser scanning microscopy showed that fluorescently labeled TF@Fe-MOF-PT NPs were bidirectionally delivered through vascular bundles in rice plants. The in vitro bactericidal activity of the TF@Fe-MOF-PT NPs showed better inhibitory activity than that of a TF suspension (TF SC), with an EC50 of 0.021 mg/L. A greenhouse test showed that the TF@Fe-MOF-PT NPs were more effective than TF SC at 7 and 14 d, with control effects of 85.88 and 78.59%, respectively. It also reduced the inhibition of seed stem length and root length by TF SC and promoted seedling growth. These results demonstrated that TF@Fe-MOF-PT NPs can be used as a pesticide nanodelivery system for efficient delivery and intelligent release in plants and applied for sustainable control of pests and diseases.


Subject(s)
Fungicides, Industrial , Metal-Organic Frameworks , Nanoparticles , Iron , Fungicides, Industrial/pharmacology , Pectins
10.
Pestic Biochem Physiol ; 198: 105749, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38225092

ABSTRACT

Blue mold induced by Penicillium choerospondiatis is a primary cause of growth and postharvest losses in the fruit of Phyllanthus emblica. There is an urgent need to explore novel and safe fungicides to control this disease. Here, we demonstrated osthole, a natural coumarin compound isolated from Cnidium monnieri, exhibited a strong inhibitory effect on mycelia growth, conidial germination rate and germ tube length of P. choerospondiatis, and effectively suppressed the blue mold development in postharvest fruit of P. emblica. The median effective concentration of osthole was 9.86 mg/L. Osthole treatment resulted in cellular structural disruption, reactive oxygen species (ROS) accumulation, and induced autophagic vacuoles containing cytoplasmic components in fungal cells. Transcriptome analysis revealed that osthole treatment led to the differentially expressed genes mainly enriched in the cell wall synthesis, TCA cycle, glycolysis/ gluconeogenesis, oxidative phosphorylation. Moreover, osthole treatment led to increase genes expression involved in peroxisome, autophagy and endocytosis. Particularly, the autophagy pathway related genes (PcATG1, PcATG3, PcATG15, PcATG27, PcYPT7 and PcSEC18) were prominently up-regulated by osthole. Summarily, these results revealed the potential antifungal mechanism of osthole against P. choerospondiatis. Osthole has potentials to develop as a natural antifungal agent for controlling blue mold disease in postharvest fruits.


Subject(s)
Antifungal Agents , Coumarins , Penicillium , Antifungal Agents/pharmacology , Coumarins/pharmacology , Gene Expression Profiling
11.
Sci Total Environ ; 917: 170146, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38278247

ABSTRACT

With the widespread use of controlled-release nanopesticides in field conditions, the interactions between these nanopesticides and biological systems are complex and highly uncertain. The toxicity of iron-based metal organic frameworks (CF@MIL-101-SL) loaded with chlorfenapyr (CF) to terrestrial invertebrate earthworms in filter paper and soil environments and the potential mechanisms of interactions in the nanopesticide-earthworm-cornfield soil microorganism system were investigated for the first time. The results showed that CF@MIL-101-SL was more poisonous to earthworms in the contact filter paper test than suspension concentrate of CF (CF-SC), and conversely, CF@MIL-101-SL was less poisonous to earthworms in the soil test. In the soil environment, the CF@MIL-101-SL treatment reduced oxidative stress and the inhibition of detoxifying enzymes, and reduced tissue and cellular substructural damage in earthworms compared to the CF-SC treatment. Long-term treatment with CF@MIL-101-SL altered the composition and abundance of microbial communities with degradative functions in the earthworm intestine and soil and affected the soil nitrogen cycle by modulating the composition and abundance of nitrifying and denitrifying bacterial communities in the earthworm intestine and soil, confirming that soil microorganisms play an important role in reducing the toxicity of CF@MIL-101-SL to earthworms. In conclusion, this study provides new insights into the ecological risks of nanopesticides to soil organisms.


Subject(s)
Metal-Organic Frameworks , Oligochaeta , Pyrethrins , Soil Pollutants , Animals , Oligochaeta/physiology , Soil/chemistry , Soil Pollutants/analysis
12.
J Agric Food Chem ; 72(4): 2263-2276, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38235648

ABSTRACT

Crystal (Cry) toxins, produced by Bacillus thuringiensis, are widely used as effective biological pesticides in agricultural production. However, insects always quickly evolve adaptations against Cry toxins within a few generations. In this study, we focused on the Cry1Ac protoxin activated by protease. Our results identified PxTrypsin-9 as a trypsin gene that plays a key role in Cry1Ac virulence in Plutella xylostella larvae. In addition, P. xylostella miR-2b-3p, a member of the micoRNA-2 (miR-2) family, was significantly upregulated by Cry1Ac protoxin and targeted to PxTrypsin-9 downregulated its expression. The mRNA level of PxTrypsin-9, regulated by miR-2b-3p, revealed an increased tolerance of P. xylostella larvae to Cry1Ac at the post-transcriptional level. Considering that miR-2b and trypsin genes are widely distributed in various pest species, our study provides the basis for further investigation of the roles of miRNAs in the regulation of the resistance to Cry1Ac and other insecticides.


Subject(s)
Bacillus thuringiensis , Insecticides , MicroRNAs , Moths , Animals , Moths/genetics , Moths/metabolism , Larva/genetics , Larva/metabolism , Trypsin/genetics , Trypsin/metabolism , Insecticides/pharmacology , Insecticides/metabolism , Bacillus thuringiensis/chemistry , Endotoxins/genetics , Endotoxins/pharmacology , Endotoxins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Hemolysin Proteins/genetics , Hemolysin Proteins/pharmacology , Hemolysin Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Insecticide Resistance/genetics
13.
Angew Chem Int Ed Engl ; 63(1): e202315092, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37943545

ABSTRACT

A PdII -catalyzed, domino enantioselective desymmetrizative coupling of 7-azabenzonorbornadienes with alkynylanilines is disclosed herein. This operationally simple transformation generates three covalent bonds and two contiguous stereocenters with excellent enantio- and diastereo-selectivity. The resulting functionalized indole-dihydronaphthalene-amine conjugates served as an appealing platform to streamline the diversity-oriented synthesis (DOS) of other valuable enantioenriched compounds. DFT calculations revealed that the two stabilizing non-covalent interactions contributed to the observed enantioselectivity.

14.
Colloids Surf B Biointerfaces ; 234: 113675, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38103428

ABSTRACT

Human interference and incorrect use of pesticides are easy to induce red imported fire ant (RIFA) escape and migrate from a nest, resulting in ineffective control of RIFA. In order to avoid RIFA alert, we designed an amphiphilic PSI-mPEG-Boc-DAH loaded Pyr to make the microparticles with effective controlled release. The investigation showed that the quantity of Pyr released by Pyr@PSI-mPEG-Boc-DAH under acidic environment was only 36.40 ± 1.90% at 48 h, whereas the release rate of original Pyr was 75.23 ± 5.71%. And the RIFA mortality rate of 1 ppm Pyr in Pyr@PSI-mPEG-Boc-DAH microparticles at 48 h was only 7.78%, which was significantly lower than that of the Pyr (47.78%). Futhermore, the death rate increased sharply after 48 h, and reached 95.84% within a week after using Pyr@PSI-mPEG-Boc-DAH microparticles. Moreover, PSI-mPEG-Boc-DAH carriers could be absorbed and even transported to crop of the RIFA for subsequent trophallaxis by using fluorescence tracking. In the field experiment, the reduction rate of Pyr@PSI-mPEG-Boc-DAH treatment was achieved 99.89% after 7 d. Pyr@PSI-mPEG-Boc-DAH didn't cause RIFA to be alarmed within 48 h and could kill nearly all of ants in the nest after 7 d, which showed a very good control effect in the field experiment. This work provided a new idea and guidance for the effective control RIFA and the development of sustainable agriculture.


Subject(s)
Ants , Fire Ants , Animals , Humans , Polymers , Polyethylene Glycols
15.
J Agric Food Chem ; 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37917564

ABSTRACT

Spodoptera frugiperda is a highly destructive migratory pest that threatens various crops globally. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is an effective biocontrol agent against lepidopteran pests. Here, we explored the molecular mechanisms underlying the immune response to AcMNPV infection in S. frugiperda. RNA-seq and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analyses identified the Toll, IMD, and apoptosis pathways as primary immune responses. Investigation into AcMNPV-induced apoptosis in the S. frugiperda cell line (Sf9) revealed that the Toll pathway activated the JNK via the TRAF6 (TNF receptor-associated factor 6) adapter. In addition, AcMNPV-induced the differential expression of several host-encoded microRNAs (miRNAs), with significant negative regulatory effects, on S. frugiperda antiviral immune genes. RNAi and miRNA-mimic mediated silencing of these genes resulted in increased AcMNPV proliferation. Our findings reinforce the potential of AcMNPV as a potent biocontrol agent and further our understanding of developing biotechnology-based targeted pest control agents.

16.
J Agric Food Chem ; 71(42): 15476-15484, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37818663

ABSTRACT

The glucosinolate-myrosinase system, exclusively found in the Brassicaceae family, is a main defense strategy against insect resistance. The efficient detoxification activity of glucosinolate sulfatases (GSSs) has successfully supported the feeding of Plutella xylostella on cruciferous plants. With the activity of GSSs hampered in P. xylostella, the toxic isothiocyanates produced from glucosinolates severely impair larval growth and adult reproduction. Therefore, inhibitors of GSSs have been suggested as an alternative approach to controlling P. xylostella. Herein, we synthesized eight adamantyl-possessing sulfamate derivatives as novel inhibitors of GSSs. Adam-20-S exhibited the most potent GSS inhibitory activity, with an IC50 value of 9.04 mg/L. The suppression of GSSs by Adam-20-S impaired glucosinolate metabolism to produce more toxic isothiocyanates in P. xylostella. Consequently, the growth and development of P. xylostella were significantly hindered when feeding on the host plant. Our study may help facilitate the development of a comprehensive pest management strategy that combines insect detoxification enzyme inhibitors with plant chemical defenses.


Subject(s)
Adamantane , Glucosinolates , Animals , Glucosinolates/pharmacology , Glucosinolates/metabolism , Insecta/metabolism , Plants/metabolism , Sulfatases , Isothiocyanates/pharmacology , Isothiocyanates/metabolism
17.
Pestic Biochem Physiol ; 195: 105548, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37666591

ABSTRACT

The utilization of RNA interference (RNAi) for pest management has garnered global interest. The bioassay results suggested the knockout of the PxRdl2 gene significantly increased the insecticidal activities of the γ-aminobutyric acid receptor (GABAR)-targeting compounds (fipronil, two pyrazoloquinazolines, and two isoxazolines), thereby presenting a viable target gene for RNAi-mediated pest control. Consequently, we suggest enhancing the insecticidal activities of GABAR-targeting compounds by knockdown the transcript level of PxRdl2. Furthermore, PxRdl2 dsRNA was expressed in HT115 Escherichia coli to reduce costs and protect dsRNA against degradation. In comparison to in vitro synthesized dsRNA, the recombinant bacteria (ds-B) exhibited superior interference efficiency and greater stability when exposed to UV irradiation. Collectively, our results provide a strategy for insecticide spray that combines synergistically with insecticidal activities by suppressing PxRdl2 using ds-B and may be beneficial for reducing the usage of insecticide and slowing pest resistance.


Subject(s)
Insecticides , Lepidoptera , Animals , Insecticides/pharmacology , Biological Assay , Escherichia coli/genetics , RNA Interference , RNA, Double-Stranded/genetics , RNA, Double-Stranded/pharmacology
18.
Pestic Biochem Physiol ; 195: 105533, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37666607

ABSTRACT

The long-term and irrational application of insecticides has increased the rate of development of pest resistance and caused numerous environmental issues. To address these problems, our previous work reported that 4,5-dihydropyrazolo[1,5-a]quinazoline (DPQ) is a class of gelled heterocyclic compounds that act on insect γ-aminobutyric acid receptors (GABAR). DPQ scaffold has no cross-resistance to existing insecticides, so the development of this scaffold is an interesting task for integrated pest management. In the present study, a novel series of 4,5-dihydropyrazolo[1,5-a]quinazolines (DPQs) were designed and synthesized based on pyraquinil, a highly insecticidal compound discovered in our previous work. Insecticidal activities of the target compounds against diamondback moth (Plutella xylostella), beet armyworm (Spodoptera exigua), fall armyworm (Spodoptera frugiperda), and red imported fire ant (Solenopsis invicta Buren) were evaluated. Compounds 6 and 12 showed the best insecticidal activity against Plutella xylostella (P. xylostella) (LC50 = 1.49 and 0.97 mg/L), better than pyraquinil (LC50 = 1.76 mg/L), indoxacarb and fipronil (LC50 = 1.80 mg/L). Meanwhile, compound 12 showed slow toxicity to Solenopsis invicta Buren (S. invicta), with a 5 d mortality rate of 98.89% at 0.5 mg/L that is similar to fipronil. Moreover, Electrophysiological studies against the PxRDL1 GABAR heterologously expressed in Xenopus oocytes indicated that compound 12 could act as a potent GABA receptor antagonist (2 µΜ, inhibition rate, 68.25%). Molecular docking results showed that Ser285 (chain A) and Thr289 (chain D) of P. xylostella GABAR participated in hydrogen bonding interactions with compound 12, and density functional theory (DFT) calculations suggested the importance of pyrazolo[1,5-a]quinazoline core in potency. This systematic study provides valuable clues for the development of DPQ scaffold in the field of agrochemicals, and compound 12 can be further developed as an insecticide and bait candidate.


Subject(s)
Insecticides , Lepidoptera , Animals , Quinazolines/pharmacology , Insecticides/pharmacology , Molecular Docking Simulation , Antioxidants
19.
J Agric Food Chem ; 71(39): 14211-14220, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37737111

ABSTRACT

To develop highly effective, nontarget organism-friendly insecticides based on the isoxazoline scaffold, we rationally designed and synthesized 25 isoxazoline derivatives containing sulfonamides and sulfinamides. Their insecticidal activities against the diamondback moth (Plutella xylostella), fall armyworm (Spodoptera frugiperda), beet armyworm (Spodoptera exigua), and Spodoptera litura Fabricius (S. litura) were evaluated. The trifluoromethyl sulfinamide-containing compound 7w displayed excellent activities with LC50 values being 0.09, 0.84, 0.87, and 0.68 mg/L against P. xylostella, S. frugiperda, S. exigua, and S. litura, respectively, which were superior to fluxametamide (LC50 = 0.09, 1.24, 1.10, and 0.65 mg/L, respectively) and maintained at the same order of magnitude LC50 values as fluralaner (LC50 = 0.02, 0.17, 0.12, and 0.19 mg/L, respectively). Importantly, compound 7w showed a medium toxicity level of acute toxicity to honeybee (LD50 = 2.22 µg/adult), which is significantly lower than the fluralaner (high toxicity level, LD50 = 0.09 µg/adult). Acute toxicity experiments with zebrafish (Danio rerio) indicated that compound 7w was safe with the LC50 value being 42.4 mg/L (low toxicity level). Furthermore, electrophysiological experiments and molecular docking studies preliminarily verified that compound 7w acts on the insect GABA receptor, and the theoretical calculations explained that the sulfinamide structure may play an important role in exhibiting biological activities. The above results suggest that compound 7w could be employed as a potentially highly effective, environmentally friendly insecticide to control multiple agricultural pests.


Subject(s)
Insecticides , Moths , Bees , Animals , Insecticides/toxicity , Insecticides/chemistry , Zebrafish , Receptors, GABA , Molecular Docking Simulation , Spodoptera , Sulfonamides/toxicity , Larva
20.
Int J Biol Macromol ; 253(Pt 4): 126947, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37734523

ABSTRACT

A chitosan-based nanoparticle was prepared using chitosan (CS) and O-carboxymethyl chitosan (O-CMCS). Our study revealed that chitosan/O-carboxymethyl chitosan/tebuconazole nanoparticles (CS/O-CMCS/TBA NPs) exhibited superior antifungal activity, foliar adhesion, and microbial target adhesion performance compared to commercial suspension concentrate (SC). The antifungal activity of CS/O-CMCS/TBA NPs against C. gloeosporioides, with a 3.13-fold increase in efficacy over TBA (SC). We also found that low concentrations of CS/O-CMCS NPs promoted the growth of C. gloeosporioides and enhanced the fungal catabolism of chitosan. Overall, the CS/O-CMCS/TBA NPs were found to possess the remarkable capability to selectively aggregate around pathogenic microorganisms and CS/O-CMCS NPs can enhance the fungal catabolism of chitosan. CS/O-CMCS/TBA NPs, as a "sugar-coated bomb", was a promising asset for effective plant disease management and pesticide utilization through the affinity of chitosan-based nanoparticles and C. gloeosporioides, enabling targeted delivery and targeted release of their encapsulated active ingredient, which was important for the development and application of biocompatible chitosan-based nanopesticides.


Subject(s)
Chitosan , Fragaria , Nanoparticles , Drug Carriers , Sugars , Chitosan/pharmacology , Antifungal Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...