Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cancer Res Clin Oncol ; 149(10): 6901-6916, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36826593

ABSTRACT

PURPOSE: The crucial role of N6-methyladenosine (m6A) methylation in anti-tumor immunity and immunotherapy has been broadly depicted. However, the molecular phenotypic linkages between m6A modification pattern and immunological ecosystem are expected to be disentangled in hepatocellular carcinoma (HCC), for immunotherapeutic unresponsiveness circumvention and combination with promising drug agents. METHODS: Modification patterns of m6A methylation were qualitatively dissected according to the large-scale HCC samples profiling. We then determined the immune phenotypic linkages by systematically evaluating their tumor microenvironment composition, immune/stromal-relevant signature, immune checkpoints correlation, and prognostic value. Individual quantification of m6A methylation pattern was achieved by m6Ascore construction, intensified by longitudinal single-cell analysis of immunotherapy cohort and validated by the transcriptomic profiles of our in-hospital GDPH-HCC cohort. Candidate therapeutic agents were also screened out. RESULTS: Three distinct m6A methylation patterns were determined in high accordance with inflamed-, excluded-, and desert-immunophenotype. To be precise, Immune-inflamed high-m6Ascore group was characterized by activated immunity with favorable prognosis. Stromal activation and absence of immune cell infiltration were observed in low-m6Ascore phenotype, linked to impaired outcome. Patients with low-m6Ascore demonstrated diminished responses and clinical benefits for cohorts receiving immunotherapy. The above credible linkage between m6A methylation pattern and tumor immune microenvironment was robustly validated in our GDPH-HCC cohort. Single-cell dynamic change of m6A methylation level in exhausted CD8 T cell and fibroblast was depicted in immunotherapy cohort fore and art. Derived from m6A methylation pattern, seven potential frontline drug agents were recognized as promising choice for high-m6Ascore patients. CONCLUSION: Our work bridged the credible linkage between epigenetics and anti-tumor immunity in HCC, unraveling m6A modification pattern as immunological indicator and predictor for immunotherapy. Individualized m6Ascore facilitated strategic choices to maximize therapy-responsive possibility.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Methylation , Carcinoma, Hepatocellular/genetics , Ecosystem , Liver Neoplasms/genetics , Tumor Microenvironment , Phenotype
2.
J Mol Graph Model ; 119: 108394, 2023 03.
Article in English | MEDLINE | ID: mdl-36527957

ABSTRACT

The benefits of large reserves, wide distribution, and high combustion energy density of natural gas hydrates are of great practical importance to alleviate the energy tension, enhance the existing energy system in China and reduce the greenhouse effect. The CO2 replacement method is a critical way to develop natural gas hydrate, while traditional experimental methods are difficult to reveal the microscopic mechanism of the replacement system. An MD (molecular dynamics) technique was utilized in this work to simulate the process of carbon dioxide replacement of gas hydrates. This simulation investigates the effects of temperature, pressure, and CO2 purity during the CO2 replacement process. CO2, different concentrations of CO2/H2O, and CO2/NH3 are used as the injected fluid. The simulation results show that the influence of temperature on the CO2 replacement of natural gas hydrate is more significant than that of pressure. Within the temperature and pressure range specified in the simulation, H2O inhibits the replacement of CO2, owing to the inhibitory effect increasing as the concentration of H2O increases; NH3 promotes the process of CO2 replacement under the temperature conditions of 250 K and 260 K, and the promotion effect becomes more significant as the concentration of NH3 increases. However, adding NH3 inhibits the CO2 replacement process with hydrate when the temperature lifts to 270 K. These findings provide new ideas to improve the efficiency of the CO2 replacement method and provide theoretical insight for the engineering exploitation of hydrates.


Subject(s)
Carbon Dioxide , Molecular Dynamics Simulation , Water , Natural Gas , Methane
SELECTION OF CITATIONS
SEARCH DETAIL
...